【題目】某地上網(wǎng)有兩種收費方式,用戶可以任選其一:

(A)記時制:2.8/小時,

(B)包月制:16/月.此外,每一種上網(wǎng)方式都加收通訊費1.2/小時.

(1)某用戶上網(wǎng)20小時,選用哪種上網(wǎng)方式比較合算?

(2)當上網(wǎng)時間在什么小時時,兩種上網(wǎng)費用一樣多?

【答案】(1)上網(wǎng)時間20小時時,選擇包月制比較合算;(2)小時時,兩種費用一樣多.

【解析】

記時制的費用為: (2.8+通訊費) 上網(wǎng)時間;包月制的費用為:16+通訊費上網(wǎng)時間;

(1) 把上網(wǎng)時間20小時代入兩種費用求值, 比較即可;

(2) 讓兩種費用相等列式求值可得上網(wǎng)時間在什么小時時, 兩種上網(wǎng)費用一樣多.

解:(1)當上網(wǎng)時間為20時,記時制的費用為:(2.8+1.2)×20=80元,

包月制的費用為:16+1.2×20=40元,

∴上網(wǎng)時間20小時時,選擇包月制比較合算;

(2)解:x小時時,兩種上網(wǎng)費用一樣多,

(2.8+1.2)x=16+1.2x,

解得x=

答:小時時,兩種費用一樣多.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】冰封超市購進一批運動服,按進價提高40%后標價,為了讓利于民,增加銷量,超市決定打八折出售,這時每套運動服的售價為140.

(1)求每套運動服的進價?

(2)超市賣出一半后,正好趕上雙十一促銷,商店決定將剩下的運動服每3400元的價格出售,很快銷售一空,這批運動服超市共獲利14000元,求該超市共購進多少套運動服?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形的頂點、分別在、軸的正半軸上,點在反比例函數(shù)的第一象限內(nèi)的圖像上,,,動點軸的上方,且滿足.

(1)若點在這個反比例函數(shù)的圖像上,求點的坐標;

(2)連接、,求的最小值;

(3)若點是平面內(nèi)一點,使得以、為頂點的四邊形是菱形,則請你直接寫出滿足條件的所有點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知四邊形ABCD是平行四邊形,下列結(jié)論中不正確的是(  )

A. ABBC時,它是菱形 B. ACBD時,它是菱形

C. 當∠ABC90°時,它是矩形 D. ACBD時,它是正方形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AB=3,BC=5,點P是BC邊上的一個動點(點P不與點B,C重合),現(xiàn)將△PCD沿直線PD折疊,使點C落下點C1處;作∠BPC1的平分線交AB于點E.設(shè)BP=x,BE=y,那么y關(guān)于x的函數(shù)圖象大致應為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】觀察下面的變形規(guī)律:

;;….

解答下面的問題:

(1)仿照上面的格式請寫出=   

(2)若n為正整數(shù),請你猜想=   ;

(3)基礎(chǔ)應用:計算:

(4)拓展應用1:解方程: =2016

(5)拓展應用2:計算:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是等腰梯形,∠ABC=60°,若其四邊滿足長度的眾數(shù)為5,平均數(shù)為 ,上、下底之比為1:2,則BD=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】《算法統(tǒng)宗》是中國古代數(shù)學名著,作者是我國明代數(shù)學家程大位.在《算法統(tǒng)宗》中記載:以繩測井,若將繩三折測之,繩多4尺,若將繩四折測之,繩多1尺,繩長井深各幾何?

譯文:用繩子測水井深度,如果將繩子折成三等份,井外余繩4尺;如果將繩子折成四等份,井外余繩1尺.問繩長、井深各是多少尺?

設(shè)井深為x尺,根據(jù)題意列方程,正確的是(  )

A. 3(x+4)=4(x+1) B. 3x+4=4x+1

C. 3(x﹣4)=4(x﹣1) D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,若∠DAE=∠E,∠B=∠D,那么AB∥DC嗎?請在下面的解答過程中填空或在括號內(nèi)填寫理由.

解:理由如下:

∵∠DAE=∠E,________

______∥BE,________

∴∠D=∠DCE.________

∵∠B=∠D,________

∴∠B=______.(等量代換)

____________,(同位角相等,兩直線平行)

查看答案和解析>>

同步練習冊答案