【題目】某企業(yè)生產(chǎn)并銷售某種產(chǎn)品,假設(shè)銷售量與產(chǎn)量相等,如圖中的折線ABD、線段CD分別表示該產(chǎn)品每千克生產(chǎn)成本y1(單位:元)、銷售價y2(單位:元)與產(chǎn)量x(單位:kg)之間的函數(shù)關(guān)系.

(1)請解釋圖中點D的橫坐標(biāo)、縱坐標(biāo)的實際意義
(2)求線段AB所表示的y1與x之間的函數(shù)表達(dá)式
(3)當(dāng)該產(chǎn)品產(chǎn)量為多少時,獲得的利潤最大?最大利潤是多少?

【答案】
(1)

解:點D的橫坐標(biāo)、縱坐標(biāo)的實際意義:當(dāng)產(chǎn)量為130kg時,該產(chǎn)品每千克生產(chǎn)成本與銷售價相等,都為42元


(2)

解:設(shè)線段AB所表示的y1與x之間的函數(shù)關(guān)系式為y=k1x+b1

∵y=k1x+b1的圖象過點(0,60)與(90,42),

∴這個一次函數(shù)的表達(dá)式為;y=﹣0.2x+60(0≤x≤90)


(3)

解:設(shè)y2與x之間的函數(shù)關(guān)系式為y=k2x+b2

∵經(jīng)過點(0,120)與(130,42),

,

解得:,

∴這個一次函數(shù)的表達(dá)式為y2=﹣0.6x+120(0≤x≤130),

設(shè)產(chǎn)量為xkg時,獲得的利潤為W元,

當(dāng)0≤x≤90時,W=x[(﹣0.6x+120)﹣(﹣0.2x+60)]=﹣0.4(x﹣75)2+2250,

∴當(dāng)x=75時,W的值最大,最大值為2250;

當(dāng)90≤x≤130時,W=x[(﹣0.6x+120)﹣42]=﹣0.6(x﹣65)2+2535,

由﹣0.6<0知,當(dāng)x>65時,W隨x的增大而減小,∴90≤x≤130時,W≤2160,

∴當(dāng)x=90時,W=﹣0.6(90﹣65)2+2535=2160,

因此當(dāng)該產(chǎn)品產(chǎn)量為75kg時,獲得的利潤最大,最大值為2250.


【解析】(1)點D的橫坐標(biāo)、縱坐標(biāo)的實際意義:當(dāng)產(chǎn)量為130kg時,該產(chǎn)品每千克生產(chǎn)成本與銷售價相等,都為42元;
(2)根據(jù)線段AB經(jīng)過的兩點的坐標(biāo)利用待定系數(shù)法確定一次函數(shù)的表達(dá)式即可;
(3)利用總利潤=單位利潤×產(chǎn)量列出有關(guān)x的二次函數(shù),求得最值即可.
此題考查了實際問題與一次函數(shù)的應(yīng)用。根據(jù)一次函數(shù)關(guān)系圖列出與實際問題相關(guān)的一次函數(shù)解析式即可。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】準(zhǔn)備一張矩形紙片,按如圖操作: 將△ABE沿BE翻折,使點A落在對角線BD上的M點,將△CDF沿DF翻折,使點C落在對角線BD上的N點.

(1)求證:四邊形BFDE是平行四邊形;
(2)若四邊形BFDE是菱形,AB=2,求菱形BFDE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,分別以B、C為圓心,BC長為半徑在BC下方畫。O(shè)兩弧交于點D,與AB、AC的延長線分別交于點E、F,連接AD、BD、CD

(1)求證:AD平分∠BAC。
(2)若BC=6,∠BAC=50°,求弧DE、弧DF的長度之和。(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某網(wǎng)店打出促銷廣告:最潮新款服裝30件,每件售價300元.若一次性購買不超過10件時,售價不變;若一次性購買超過10件時,每多買1件,所買的每件服裝的售價均降低3元.已知該服裝成本是每件200元,設(shè)顧客一次性購買服裝x件時,該網(wǎng)店從中獲利y元.
(1)求y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍。
(2)顧客一次性購買多少件時,該網(wǎng)店從中獲利最多?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某人的錢包內(nèi)有10元、20元和50元的紙幣各1張,從中隨機取出2張紙幣.
(1)求取出紙幣的總額是30元的概率
(2)找出總額超過51元的結(jié)果數(shù),然后根據(jù)概率公式計算

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理解:如圖①,如果四邊形ABCD滿足AB=AD,CB=CD,∠B=∠D=90°,那么我們把這樣的四邊形叫做“完美箏形”.
將一張如圖①所示的“完美箏形”紙片ABCD先折疊成如圖②所示形狀,再展開得到圖③,其中CE,CF為折痕,∠BCE=∠ECF=∠FCD,點B′為點B的對應(yīng)點,點D′為點D的對應(yīng)點,連接EB′,F(xiàn)D′相交于點O.

(1)在平行四邊形、矩形、菱形、正方形四種圖形中,一定為“完美箏形”的是
(2)當(dāng)圖③中的∠BCD=120°時,∠AEB′=
(3)當(dāng)圖②中的四邊形AECF為菱形時,對應(yīng)圖③中的“完美箏形”有  個(包含四邊形ABCD).
(4)拓展提升:當(dāng)圖③中的∠BCD=90°時,連接AB′,請?zhí)角蟆螦B′E的度數(shù),并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某倉儲中心有一斜坡AB,其坡度為i=1:2,頂部A處的高AC為4m,B、C在同一水平地面上

(1)求斜坡AB的水平寬度BC。
(2)矩形DEFG為長方體貨柜的側(cè)面圖,其中DE=2.5m,EF=2m,將該貨柜沿斜坡向上運送,當(dāng)BF=3.5m時,求點D離地面的高。(≈2.236,結(jié)果精確到0.1m)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=a(x﹣1)2+4與x軸交于點A、B兩點,與y軸交于點C,且點B的坐標(biāo)為(3,0),點P在這條拋物線上,且不與B、C兩點重合.過點P作y軸的垂線與射線BC交于點Q,以PQ為邊作Rt△PQF,使∠PQF=90°,點F在點Q的下方,且QF=1.設(shè)線段PQ的長度為d,點P的橫坐標(biāo)為m.

(1)求這條拋物線所對應(yīng)的函數(shù)表達(dá)式.
(2)求d與m之間的函數(shù)關(guān)系式.
(3)當(dāng)Rt△PQF的邊PF被y軸平分時,求d的值.
(4)以O(shè)B為邊作等腰直角三角形OBD,當(dāng)0<m<3時,直接寫出點F落在△OBD的邊上時m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P為正方形ABCD的邊BC上一動點(P與B、C不重合),連接AP,過點B作BQ⊥AP交CD于點Q,將△BQC沿BQ所在的直線對折得到△BQC′,延長QC′交BA的延長線于點M.

(1)試探究AP與BQ的數(shù)量關(guān)系,并證明你的結(jié)論
(2)當(dāng)AB=3,BP=2PC,求QM的長;
(3)當(dāng)BP=m,PC=n時,求AM的長.

查看答案和解析>>

同步練習(xí)冊答案