【題目】利用圖象解一元二次方程x2-2x-1=0時,我們采用的一種方法是在直角坐標系中畫出拋物線y=x2和直線y=2x+1,兩圖象交點的橫坐標就是該方程的解.
(1)請再給出一種利用圖象求方程x2-2x-1=0的解的方法;
(2)已知函數(shù)y=x3的圖象(如圖),求方程x3-x-2=0的解(結果保留兩位有效數(shù)字).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=﹣2x+4的圖象與x軸、y軸分別交于點A、B,點C是OA的中點,過點C作CD⊥OA于C交一次函數(shù)圖象于點D,P是OB上一動點,則PC+PD的最小值為( 。
A.4B.C.2D.2+2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】請閱讀下述材料:
下述形式的繁分數(shù)叫做有限連分數(shù),其中n是自然數(shù),a0是整數(shù),a1,a2,a3,…,an是正整數(shù):
其中稱為部分商。
按照以下方式可將任何一個分數(shù)轉(zhuǎn)化為連分數(shù)的形式:,則;考慮的倒數(shù),有,從而;再考慮的倒數(shù),有,于是得到a的連分數(shù)展開式,它有4個部分商:3,1,3,3;
可利用連分數(shù)來求二元一次不定方程的特殊解,以為例,首先將寫成連分數(shù)的形式,如上所示;其次,數(shù)部分商的個數(shù),本例是偶數(shù)個部分商(奇數(shù)情況請見下例);最后計算倒數(shù)第二個漸近分數(shù),從而是一個特解。
考慮不定方程,先將寫成連分數(shù)的形式:。
注意到此連分數(shù)有奇數(shù)個部分商,將之改寫為偶數(shù)個部分商的形式:
計算倒數(shù)第二個漸近分數(shù):,所以是的一個特解。
對于分式,有類似的連分式的概念,利用將分數(shù)展開為連分數(shù)的方法,可以將分式展開為連分式。例如的連分式展開式如下,它有3個部分商: ;
再例如,,它有4個部分商:1,。
請閱讀上述材料,利用所講述的方法,解決下述兩個問題
(1)找出兩個關于x的多項式p和q,使得。
(2)找出兩個關于x的多項式u和v,使得。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一條拋物線與x軸相交于A,B兩點,其頂點P在折線C-D-E上移動,若點C,D,E的坐標分別為(-1,4),(3,4),(3,1),點B的橫坐標的最小值為1,則點A的橫坐標的最大值為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在數(shù)軸上點表示數(shù),點表示數(shù),點表示數(shù),已知數(shù)是最小的正整數(shù),且、滿足.
(1) , , ;
(2)若將數(shù)軸折疊,使得點與點重合,則點與數(shù) 表示的點重合;
(3)點、、開始在數(shù)軸上運動,若點以每秒1個單位長度的速度向左運動,同時,點和點分別以每秒2個單位長度和4個單位長度的速度向右運動,假設秒鐘過后,若點與點之間的距離表示為,點與點之間的距離表示為,點與點之間的距離表示為,求、、的長(用含的式子表示);
(4)在(3)的條件下,的值是否隨著時間的變化而改變?若改變,請說明理由;若不變,請求其值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀材料:我們知道:點A.B在數(shù)軸上分別表示有理數(shù)a、b,A.B兩點之間的距離表示為AB,在數(shù)軸上A.B兩點之間的距離AB=|a-b|.所以式子|x3|的幾何意義是數(shù)軸上表示有理數(shù)3的點與表示有理數(shù)x的點之間的距離.
根據(jù)上述材料,解答下列問題:
(1)若|x3|=4,則x=______;
(2)式子|x3|=|x+1|,則x=______;
(3)若|x3|+|x+1|=9,借助數(shù)軸求x的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下面是某街區(qū)的平面示意圖,根據(jù)要求答題.
(1)這幅圖的比例尺是( )
(2)學校位于廣場的( )面(填東、南、西、北)( )千米處.
(3)人民公園位于廣場的東偏南方向3千米處.在圖中標出它的位置.
(4)廣場的西面1千米處,有一條商業(yè)街與人民路垂直,在圖中畫線表示商業(yè)街.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】圖中的五個半圓,鄰近的兩半圓相切,兩只小蟲同時出發(fā),以相同的速度從A點到B點,甲蟲沿ADA1、A1EA2、A2FA3、A3GB路線爬行,乙蟲沿ACB路線爬行,則下列結論正確的是( 。
A. 甲先到B點 B. 乙先到B點 C. 甲、乙同時到B D. 無法確定
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】點D、E分別是△ABC兩邊AB、BC所在直線上的點,∠BDE+∠ACB=180°,DE=AC,AD=2BD.
(1) 如圖1,當點D、E分別在AB、CB的延長線上時,求證:BE=BD
(2) 如圖2,當點D、E分別在AB、BC邊上時,BE與BD存在怎樣的數(shù)量關系?請寫出你的結論,并證明
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com