【題目】如圖,拋物線y=ax2 +bx+ 4x軸的兩個交點分別為A(-40)、B2,0),與y軸交于點C,頂點為DE1,2)為線段BC的中點,BC的垂直平分線與x軸、y軸分別交于F、G

1)求拋物線的函數(shù)解析式,并寫出頂點D的坐標;

2)在直線EF上求一點H,使CDH的周長最小,并求出最小周長;

3)若點Kx軸上方的拋物線上運動,當K運動到什么位置時,

EFK的面積最大?并求出最大面積.

【答案】1頂點D的坐標為(-1,

2H,

3K(-

【解析】

1)將A、B的坐標代入拋物線的解析式中,即可求出待定系數(shù)的值,進而可用配方法求出其頂點D的坐標;
2)根據(jù)拋物線的解析式可求出C點的坐標,由于CD是定長,若△CDH的周長最小,那么CH+DH的值最小,由于EF垂直平分線段BC,那么B、C關(guān)于直線EF對稱,所以BDEF的交點即為所求的H點;易求得直線BC的解析式,關(guān)鍵是求出直線EF的解析式;由于EBC的中點,根據(jù)B、C的坐標即可求出E點的坐標;可證△CEG∽△COB,根據(jù)相似三角形所得的比例線段即可求出CG、OG的長,由此可求出G點坐標,進而可用待定系數(shù)法求出直線EF的解析式,由此得解;
3)過Kx軸的垂線,交直線EFN;設出K點的橫坐標,根據(jù)拋物線和直線EF的解析式,即可表示出K、N的縱坐標,也就能得到KN的長,以KN為底,F、E橫坐標差的絕對值為高,可求出△KEF的面積,由此可得到關(guān)于△KEF的面積與K點橫坐標的函數(shù)關(guān)系式,根據(jù)所得函數(shù)的性質(zhì)即可求出其面積的最大值及對應的K點坐標.

1)由題意,得解得b=1

所以拋物線的解析式為,頂點D的坐標為(-1,).

2)設拋物線的對稱軸與x軸交于點M.因為EF垂直平分BC,即C關(guān)于直線EG的對稱點為B,連結(jié)BD交于EF于一點,則這一點為所求點H,使DH+CH最小,即最小為

DH+CH=DH+HB=BD=.而

∴△CDH的周長最小值為CD+DR+CH=

設直線BD的解析式為y=k1x+b,則解得,b1= 3

所以直線BD的解析式為y=x+ 3

由于BC= 2,CE=BC∕2 =,Rt△CEG∽△COB,

CE:CO=CG:CB,所以CG= 2.5,GO= 1.5G0,1.5).

同理可求得直線EF的解析式為y=x+

聯(lián)立直線BDEF的方程,解得使CDH的周長最小的點H,).

3)設Kt,),xFtxE.過Kx軸的垂線交EFN

KN=yKyN=-(t+=

所以SEFK=SKFN+SKNE=KNt+ 3+KN1t= 2KN= t23t+ 5 =-(t+2+

即當t=時,EFK的面積最大,最大面積為,此時K(-,).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】有一塊長方形的土地,寬為120m,建筑商把它分成甲、乙、丙三部分,甲和乙均為正方形,現(xiàn)計劃甲建住宅區(qū)乙建商場,丙地開辟成面積為3200m2的公園.若設這塊長方形的土地長為xm.那么根據(jù)題意列出的方程是_____.(將答案寫成ax2+bx+c=0(a≠0)的形式)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2011山東濟南,27,9分)如圖,矩形OABC中,點O為原點,點A的坐標為(08),點C的坐標為(6,0).拋物線經(jīng)過A、C兩點,與AB邊交于點D

1)求拋物線的函數(shù)表達式;

2)點P為線段BC上一個動點(不與點C重合),點Q為線段AC上一個動點,AQ=CP,連接PQ,設CP=m,△CPQ的面積為S

S關(guān)于m的函數(shù)表達式,并求出m為何值時,S取得最大值;

S最大時,在拋物線的對稱軸l上若存在點F,使△FDQ為直角三角形,請直接寫出所有符合條件的F的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在中,,將折疊,使點落在點處,折痕所在直線交的外角平分線于點,則點的距離為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,內(nèi)接于⊙O,是⊙O上與點關(guān)于圓心成中心對稱的點,邊上一點,連結(jié).已知,是線段上一動點,連結(jié)并延長交四邊形的一邊于點,且滿足,則的值為_______________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)計算:(2ab)2+a2(a+2b)(a2b)+a8÷a2

(2)解方程:

(3)先化簡,再求值:÷,其中x=﹣

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=﹣x+5x軸交于點B,與y軸交于點D,拋物線y=﹣x2+bx+c與直線y=﹣x+5交于B,D兩點,點C是拋物線的頂點.

1)求拋物線的解析式;

2)點M是直線BD上方拋物線上的一個動點,其橫坐標為m,過點Mx軸的垂線,交直線BD于點P,當線段PM的長度最大時,求m的值及PM的最大值;

3)在拋物線上是否存在異于BD的點Q,使BDQBD邊上的高為3,若存在求出點Q的坐標;若不存在請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小亮一家在一湖泊中游玩,湖泊中有一孤島,媽媽在孤島P處觀看小亮與爸爸在湖中劃船(如圖所示).小船從P處出發(fā),沿北偏東60°方向劃行200米到A處,接著向正南方向劃行一段時間到B處.在B處小亮觀測到媽媽所在的P處在北偏西37°的方向上,這時小亮與媽媽相距多少米(精確到1米)?

(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.41,≈1.73

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形OABC的頂點AC分別在x軸和y軸上,點B的坐標為.雙曲線的圖象經(jīng)過BC的中點D,且與AB交于點E,連接DE

1)求k的值及點E的坐標;

2)若點FOC邊上一點,且△FBC∽△DEB,求直線FB的解析式.

查看答案和解析>>

同步練習冊答案