【題目】(1)計算:(2ab)2+a2(a+2b)(a2b)+a8÷a2

(2)解方程:

(3)先化簡,再求值:÷,其中x=﹣

【答案】(1) a4+ a6;(2);(3) ,.

【解析】

(1)根據(jù)整式的混合運算順序和運算法則計算可得;

(2)根據(jù)解分式方程的步驟:①去分母;②求出整式方程的解;③檢驗;④得出結論計算.

(3)先算除法,再算減法,最后把x的值代入進行計算即可.

解:(1)原式=4a2b2+a2(a2-4b2)+a6
=4a2b2+a4-4a2b2+a6
=a4+ a6;

(2)去分母,(x+4)26(x4)=(x4)(x+4)

去括號,x2+8x+166x+24=x216

移項,合并同類項,得2x=56

系數(shù)化為1,得x=28

檢驗:當x=28,(x4)(x+4)≠0,

所以原方程的解是x=28.

(3)原式= +

= +

=

=

x=- 時,原式=-

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,∠A+∠D=180°,∠1=3∠2,∠2=24°,點P是BC上的一點.

(1)請寫出圖中∠1的一對同位角,一對內錯角,一對同旁內角;

(2)求∠EFC與∠E的度數(shù);

(3)若∠BFP=46°,請判斷CE與PF是否平行?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點A(2,0),B(0,4),作△BOC,使△BOC與△ABO全等,則點C坐標為__________________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCD交于點O,OE平分∠AOC,點FAB上一點(不與點AO重合),過點FFGOE,交CD于點G,若∠AOD=110°,則∠AFG度數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商店以40元/千克的進價購進一批茶葉,經(jīng)調查發(fā)現(xiàn),在一段時間內,銷售量y(千克)與銷售價x(元/千克)成一次函數(shù)關系,其圖象如圖所示.
(1)求y與x之間的函數(shù)關系式(不必寫出自變量x的取值范圍);
(2)若該商店銷售這批茶葉的成本不超過2800元,則它的最低銷售價應定為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,BCAF于點C,∠A+∠190°.

1)求證:ABDE

2)如圖2,點P從點A出發(fā),沿線段AF運動到點F停止,連接PB,PE.則∠ABP,∠DEP,∠BPE三個角之間具有怎樣的數(shù)量關系(不考慮點P與點A,D,C重合的情況)?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】汽車的“燃油效率”是指汽車每消耗1升汽油行駛的里程數(shù).“燃油效率”越高表示汽車每消耗1升汽油行駛的里程數(shù)越多;“燃油效率”越低表示汽車每消耗1升汽油行駛的里程數(shù)越少.如圖描述了甲、乙、丙三輛汽車在不同速度下的燃油效率情況,下列說法中,正確的是(
A.以相同速度行駛相同路程,三輛車中,甲車消耗汽油最多
B.以低于80km/h的速度行駛時,行駛相同路程,三輛車中,乙車消耗汽油最少
C.以高于80km/h的速度行駛時,行駛相同路程,丙車比乙車省油
D.以80km/h的速度行駛時,行駛100公里,甲車消耗的汽油量約為10升

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,對角線BD平分∠ABC,過點A作AE∥BD,交CD的延長線于點E,過點E作EF⊥BC,交BC延長線于點F.
(1)求證:四邊形ABCD是菱形;
(2)若∠ABC=45°,BC=2,求EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在長方形ABCD中,AB=2,BC=1,運點P從點B出發(fā),沿路線BCD作勻速運動,那么ABP的面積與點P運動的路程之間的函數(shù)圖象大致是( ).

A. B. C. D.

查看答案和解析>>

同步練習冊答案