已知二次函數(shù)y=ax2+bx+c中函數(shù)y與自變量x之間的部分對(duì)應(yīng)值如下表所示,點(diǎn)A(x1,y1)、B(x2,y2)在函數(shù)圖象上,當(dāng)0<x1<1,2<x2<3時(shí),則y1 y2(填“>”或“<”).
x … 0 1 2 3 …
y … 1 ﹣2 ﹣3 ﹣2 …
>
考點(diǎn): 二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征.
專題: 數(shù)形結(jié)合.
分析: 利用表中數(shù)據(jù)得到拋物線開口向上,對(duì)稱軸為直線x=2,然后利用拋物線開口向上時(shí),離對(duì)稱軸越遠(yuǎn)的點(diǎn)所對(duì)應(yīng)的函數(shù)值越大進(jìn)行求解.
解答: 解:根據(jù)表中數(shù)據(jù)得到拋物線開口向上,對(duì)稱軸為直線x=2,
因?yàn)?<x1<1,2<x2<3,
所以點(diǎn)A比點(diǎn)B離對(duì)稱軸要遠(yuǎn),
所以y1>y2.
故答案為>.
點(diǎn)評(píng): 本題考查了二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征:二次函數(shù)圖象上點(diǎn)的坐標(biāo)滿足其解析式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,矩形紙片ABCD中,AB=4,AD=3,折疊紙片使AD邊與對(duì)角線BD重合,折痕為DG,則AG的長為( )
A.1 B. C. D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知關(guān)于x的一元二次方程(a﹣1)x2﹣2x+1=0.
(1)若方程的其中一個(gè)根是﹣1,求a的值;
(2)若方程有兩個(gè)不相等的實(shí)數(shù)根,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在平面直角坐標(biāo)系中,拋物線y=﹣x2+bx+c與x軸交于A、D兩點(diǎn),與y軸交于點(diǎn)B,四邊形OBCD是矩形,點(diǎn)A的坐標(biāo)為(1,0),點(diǎn)B的坐標(biāo)為(0,4),已知點(diǎn)E(m,0)是線段DO上的動(dòng)點(diǎn),過點(diǎn)E作PE⊥x軸交拋物線于點(diǎn)P,交BC于點(diǎn)G,交BD于點(diǎn)H.
(1)求該拋物線的解析式;
(2)當(dāng)點(diǎn)P在直線BC上方時(shí),請(qǐng)用含m的代數(shù)式表示PG的長度;
(3)在(2)的條件下,是否存在這樣的點(diǎn)P,使得以P、B、G為頂點(diǎn)的三角形與△DEH相似?若存在,求出此時(shí)m的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,⊙O的半徑是2,直線l與⊙O相交于A、B兩點(diǎn),M、N是⊙O上的兩個(gè)動(dòng)點(diǎn),且在直線l的異側(cè),若∠AMB=45°,則四邊形MANB面積的最大值是.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
楚天汽車銷售公司5月份銷售某種型號(hào)汽車,當(dāng)月該型號(hào)汽車的進(jìn)價(jià)為30萬元/輛,若當(dāng)月銷售量超過5輛時(shí),每多售出1輛,所有售出的汽車進(jìn)價(jià)均降低0.1萬元/輛.根據(jù)市場(chǎng)調(diào)查,月銷售量不會(huì)突破30臺(tái).
(1)設(shè)當(dāng)月該型號(hào)汽車的銷售量為x輛(x≤30,且x為正整數(shù)),實(shí)際進(jìn)價(jià)為y萬元/輛,求y與x的函數(shù)關(guān)系式;
(2)已知該型號(hào)汽車的銷售價(jià)為32萬元/輛,公司計(jì)劃當(dāng)月銷售利潤25萬元,那么該月需售出多少輛汽車?(注:銷售利潤=銷售價(jià)﹣進(jìn)價(jià))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com