【題目】如圖,長(zhǎng)方形OABC中,O為平面直角坐標(biāo)系的原點(diǎn),點(diǎn)A、C的坐標(biāo)分別為A(6,0)、 C(0,4),點(diǎn)B在第一象限.
(1)寫(xiě)出點(diǎn)B的坐標(biāo)和長(zhǎng)方形OABC的面積;
(2)若點(diǎn)D沿長(zhǎng)方形的邊從O→C→B運(yùn)動(dòng),若三角形OBD的面積是長(zhǎng)方形OABC的面積的三分之一, 求點(diǎn)D的坐標(biāo).
【答案】(1)點(diǎn)B的坐標(biāo)為(6,4)、長(zhǎng)方形OABC的面積為24 ;(2)點(diǎn)D的坐標(biāo)為(2,4)或(0, ).
【解析】試題分析:(1)根據(jù)長(zhǎng)方形的性質(zhì)即可得點(diǎn)B的坐標(biāo),利用長(zhǎng)方形的面積公式即可得面積;
(2)分點(diǎn)D在不同的邊上進(jìn)行討論即可得.
試題解析:(1)點(diǎn)B的坐標(biāo)為(6,4)、長(zhǎng)方形OABC的面積為24 ;
(2)∵三角形OBD的面積是長(zhǎng)方形OABC的面積的三分之一,
∴三角形OBD的面積為 24=8;
①如圖,當(dāng)點(diǎn)D在邊OC上時(shí),則ODBC=8,
∴OD6=8,∴OD=,∴D的坐標(biāo)為(0, );
②如圖,當(dāng)點(diǎn)D在邊BC上時(shí),則BDOC=8,
∴BD4=8,∴BD=4,∴CD=6-4=2,∴D的坐標(biāo)為(2,4);
綜上所述,點(diǎn)D的坐標(biāo)為(2,4)或(0, ).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,點(diǎn)D、E分別為邊AB、AC的中點(diǎn),則△ADE與△ABC的面積之比為____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列運(yùn)算正確的是( )
A.5a2﹣3a2=2
B.2x2+3x2=5x4
C.3a+2b=5ab
D.7ab﹣6ba=ab
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,過(guò)點(diǎn)D作DE∥AC且AC=2DE,連接AE交OD于點(diǎn)F,連接CE、OE.
(1)求證:OE=CD;
(2)若菱形ABCD的邊長(zhǎng)為2,∠ABC=60°,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】出租車司機(jī)小李某天的運(yùn)營(yíng)全是在東西走向的人民大街進(jìn)行的,如果規(guī)定向東為正,向西為負(fù),他這天下午的行車?yán)锍倘缦拢▎挝唬?/span>km)
+10、-3、-8、+11、-10、+12、+4、-15、-16、+15
(1)將最后一名乘客送到目的地時(shí),小李距下午出車地點(diǎn)的距離是多少?
(2)若汽車的耗油量為0.5L/㎞,那么這天下午汽車共耗油多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】⊙O的直徑為20,弦AB長(zhǎng)為12,點(diǎn)P是弦AB上一點(diǎn),則OP的取值范圍是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】平行四邊形ABCD的兩個(gè)頂點(diǎn)A、C在反比例函數(shù)(k≠0)圖象上,點(diǎn)B、D在x軸上,且B、D兩點(diǎn)關(guān)于原點(diǎn)對(duì)稱,AD交y軸于P點(diǎn)
(1)已知點(diǎn)A的坐標(biāo)是(2,3),求k的值及C點(diǎn)的坐標(biāo);
(2)若△APO的面積為2,求點(diǎn)D到直線AC的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com