【題目】如圖,在△ABC中,∠C=90°,AD平分∠CAB,交CB于點D,過點D作DE⊥AB于點E.
(1)求證:△ACD≌△AED;
(2)若∠B=30°,CD=1,求BD的長.

【答案】
(1)證明:∵AD平分∠CAB,DE⊥AB,∠C=90°,

∴CD=ED,∠DEA=∠C=90°,

∵在Rt△ACD和Rt△AED中

∴Rt△ACD≌Rt△AED(HL)


(2)解:∵DC=DE=1,DE⊥AB,

∴∠DEB=90°,

∵∠B=30°,

∴BD=2DE=2


【解析】(1)根據(jù)角平分線性質(zhì)求出CD=DE,根據(jù)HL定理求出另三角形全等即可;(2)求出∠DEB=90°,DE=1,根據(jù)含30度角的直角三角形性質(zhì)求出即可.
【考點精析】根據(jù)題目的已知條件,利用角平分線的性質(zhì)定理和含30度角的直角三角形的相關(guān)知識可以得到問題的答案,需要掌握定理1:在角的平分線上的點到這個角的兩邊的距離相等; 定理2:一個角的兩邊的距離相等的點,在這個角的平分線上;在直角三角形中,如果一個銳角等于30°,那么它所對的直角邊等于斜邊的一半.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】70°30′的余角為°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將二次函數(shù)y2x2的圖像向上平移3個單位長度,再向右平移2個單位長度,得到的圖像所對應(yīng)的函數(shù)表達(dá)式為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著人們“節(jié)能環(huán)保,綠色出行”意識的增強,越來越多的人喜歡騎自行車出行,也給自行車商家?guī)砩虣C.某自行車行經(jīng)營的A型自行車去年銷售總額為8萬元.今年該型自行車每輛售價預(yù)計比去年降低200元.若該型車的銷售數(shù)量與去年相同,那么今年的銷售總額將比去年減少10%,求:
(1)A型自行車去年每輛售價多少元?
(2)該車行今年計劃新進(jìn)一批A型車和新款B型車共60輛,且B型車的進(jìn)貨數(shù)量不超過A型車數(shù)量的兩倍.已知,A型車和B型車的進(jìn)貨價格分別為1500元和1800元,計劃B型車銷售價格為2400元,應(yīng)如何組織進(jìn)貨才能使這批自行車銷售獲利最多?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】順次連接矩形四邊中點所得的四邊形一定是(
A.正方形
B.矩形
C.菱形
D.等腰梯形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,為了躲避臺風(fēng),一輪船一直由西向東航行,上午10點,在A處測得小島P的方向是北偏東75°,以每小時15海里的速度繼續(xù)向東航行,中午12點到達(dá)B處,并測得小島P的方向是北偏東60°,若小島周圍25海里內(nèi)有暗礁,問該輪船是否能一直向東航行?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,矩形OABC的頂點B在第一象限,點Cx軸上,點Ay軸上,D、E分別是AB,OA中點.過點D的雙曲線BC交于點G.連接DCFDC上,且DFFC=3:1,連接DEEF.若△DEF的面積為6,則k的值為(  ).

A. B. C. 6 D. 10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,拋物線軸交于兩點(點在點的左側(cè)),與軸交于點,點的坐標(biāo)為,將直線沿軸向上平移4個單位長度后恰好經(jīng)過兩點。

(1)求直線及拋物線的解析式;

(2)將直線沿軸向上平移5個單位長度后與拋物線交于兩點,若點是拋物線位于直線下方的一個動點,連接,交直線于點,連接。設(shè)的面積為,當(dāng)S取得最大值時,求出此時點的坐標(biāo)及的最大值;

(3)如圖2,記(2)問中直線軸交于點,現(xiàn)有一點點出發(fā),先沿軸到達(dá)點,再沿到達(dá)點,已知點在軸上運動的速度是每秒2個單位長度,它在直線上運動速度是1個單位長度,F(xiàn)要使點按照上述要求到達(dá)點所用的時間最短,請簡述確定點位置的過程,求出點的坐標(biāo),不要求證明。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列長度的三根木棒首尾相接,不能做成三角形框架的是( 。

A. 5、7、3 B. 7、13、10 C. 5、7、2 D. 5、10、6

查看答案和解析>>

同步練習(xí)冊答案