【題目】我們把正邊形()的各邊三等分,分別以居中的那條線段為一邊向外作正邊形,并去掉居中的那條線段,得到一個新的圖形叫做正邊形的“擴(kuò)展圖形”,并將它的邊數(shù)記為,如圖,將正三角形進(jìn)行上述操作后得到其“擴(kuò)展圖形”,且.圖、圖分別是正五邊形、正六邊形的“擴(kuò)展圖形”。
(1)如圖,在的正方形網(wǎng)格中用較粗的虛線畫有一個正方形,請在圖中用實線畫出此正方形的“擴(kuò)展圖形”;
(2)已知,則圖中=_____,根據(jù)以上規(guī)律,正邊形的“擴(kuò)展圖形”的=______;(用含的式子表示)
(3)已知,且,則=_____.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個半徑為的圓形紙片在邊長為的等邊三角形內(nèi)任意運動,則在該等邊三角形內(nèi),這個圓形紙片“不能接觸到的部分”的面積是____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】襄陽市精準(zhǔn)扶貧工作已進(jìn)入攻堅階段.貧困戶張大爺在某單位的幫扶下,把一片坡地改造后種植了優(yōu)質(zhì)水果藍(lán)莓,今年正式上市銷售.在銷售的30天中,第一天賣出20千克,為了擴(kuò)大銷量,采取了降價措施,以后每天比前一天多賣出4千克.第x天的售價為y元/千克,y關(guān)于x的函數(shù)解析式為 且第12天的售價為32元/千克,第26天的售價為25元/千克.已知種植銷售藍(lán)莓的成木是18元/千克,每天的利潤是W元(利潤=銷售收入﹣成本).
(1)m= ,n= ;
(2)求銷售藍(lán)莓第幾天時,當(dāng)天的利潤最大?最大利潤是多少?
(3)在銷售藍(lán)莓的30天中,當(dāng)天利潤不低于870元的共有多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖1,在平面直角坐標(biāo)系中,點O為坐標(biāo)原點,拋物線y=ax2+bx+5與x軸交于A,點B,與y軸交于點C,過點C作CD⊥y軸交拋物線于點D,過點B作BE⊥x軸,交DC延長線于點E,連接BD,交y軸于點F,直線BD的解析式為y=﹣x+2.
(1)寫出點E的坐標(biāo);拋物線的解析式.
(2)如圖2,點P在線段EB上從點E向點B以1個單位長度/秒的速度運動,同時,點Q在線段BD上從點B向點D以個單位長度/秒的速度運動,當(dāng)一個點到達(dá)終點時,另一個點隨之停止運動,當(dāng)t為何值時,△PQB為直角三角形?
(3)如圖3,過點B的直線BG交拋物線于點G,且tan∠ABG=,點M為直線BG上方拋物線上一點,過點M作MH⊥BG,垂足為H,若HF=MF,請直接寫出滿足條件的點M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形OABC的一個頂點B的坐標(biāo)是(4,2),反比例函數(shù)y=(x>0)的圖象經(jīng)過矩形的對稱中點E,且與邊BC交于點D,若過點D的直線y=mx+n將矩形OABC的面積分成3:5的兩部分,則此直線的解析式為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCO在平面直角坐標(biāo)系中,AO,CO分別在y軸,x軸正半軸上,若S矩形AOCB=BO2,矩形AOCB的周長為16.
(1)求B點坐標(biāo);
(2)點D在OC延長線上,設(shè)D點橫坐標(biāo)為d,連BD,將直線DB繞D點逆時針方向旋轉(zhuǎn)45°交AO于E,交BC于F,連EC,設(shè)△CDE面積=S,求出S與d的函數(shù)關(guān)系式并注明自變量d的取值范圍;
(3)在(2)條件下,當(dāng)點E在AO上時,過A作ED的平行線交CB于G,交BD于N,若BG=2CF,求S的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,點是邊上一動點(不與點重合),以長為半徑的與邊的另一個交點為,過點作于點.
當(dāng)與邊相切時,求的半徑;
聯(lián)結(jié)交于點,設(shè)的長為,的長為,求關(guān)于的函數(shù)解析式,并直接寫出的取值范圍;
在的條件下,當(dāng)以長為直徑的與相交于邊上的點時,求相交所得的公共弦的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A(-2,0),B(0,1),以線段AB為邊在第二象限作矩形ABCD,雙曲線(k<0)經(jīng)過點D,連接BD,若四邊形OADB的面積為6,則k的值是_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com