【題目】如圖,在矩形ABCD中,AD=4,∠DAC=30°,點P、E分別在AC、AD上,則PE+PD的最小值是( )
A.2
B.2
C.4
D.
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC為等腰直角三角形,∠ACB=90°,CD是斜邊AB上的中線,且CD=2,點E是線段BD上任意一點,以CE為邊向左側作正方形CEFG,EF交BC于點M,連接BG交EF于點N.
(1)證明:△CAE≌△CBG;
(2)設DE=x,BN=y,求y關于x的函數(shù)關系式,并求出y的最大值;
(3)當DE=2 ﹣2時,求∠BFE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩地相距300km,一輛貨車和一輛轎車先后從甲地出發(fā)向乙地.如圖,線段OA表示貨車離甲地距離y(km)與時間x(h)之間的函數(shù)關系,折線BCDE表示轎車離甲地距離y(km)與時間x(h)之間的函數(shù)關系.請根據(jù)圖象,解答下列問題:
(1)線段CD表示轎車在途中停留了 h;
(2)求線段DE對應的函數(shù)解析式;
(3)求轎車從甲地出發(fā)后經(jīng)過多長時間追上貨車.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①所示,正方形ABCD的邊長為6 cm,動點P從點A出發(fā),在正方形的邊上沿A→B→C→D運動,設運動的時間為t(s),三角形APD的面積為S(cm2),S與t的函數(shù)圖象如圖②所示,請回答下列問題:
(1)點P在AB上運動的時間為________s,在CD上運動的速度為________cm/s,三角形APD的面積S的最大值為________cm2;
(2)求出點P在CD上運動時S與t之間的函數(shù)表達式;
(3)當t為何值時,三角形APD的面積為10 cm2?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,點E為矩形ABCD邊AD上一點,點P,點Q同時從點B出發(fā),點P沿BE→ED→DC運動到點C停止,點Q沿BC運動到點C停止,它們的運動速度都是1cm/s,設P、Q出發(fā)t秒時,△BPQ的面積為y(cm2),已知y與t的函數(shù)關系的圖象如圖2(曲線OM為拋物線的一部分),則下列結論:
①AD=BE=5cm;②當0<t≤5時,y= t2;③直線NH的解析式為y=﹣ t+27;④若△ABE與△QBP相似,則t= 秒,
其中正確結論的個數(shù)為( )
A.4
B.3
C.2
D.1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示的圖象記錄了某地一月份某天的溫度隨時間變化.的情況,請你仔細觀察圖象回答下面的問題:
(1)20時的溫度是 ℃,溫度是0℃時的時刻是 時,最暖和的時刻是 時,溫度在-3℃以下的持續(xù)時間為 時;
(2)從圖象中還能獲取哪些信息?(寫出1~2條即可)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,甲、乙兩動點分別從正方形ABCD的頂點,A,C同時沿正方形的邊開始移動,甲點依順時針方向環(huán)行,乙點依逆時針方向環(huán)行,若乙的速度是甲的速度的4倍,則它們第2019次相遇在______邊上(填AB,BC,CD或AD).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,AB=AC,點D是直線BC上一點(不與B、C重合),以AD為一邊在AD的右側作△ADE,使AD=AE,∠DAE=∠BAC,連接CE.
(1)如圖一,若△ABC是等邊三角形,且AB=AC=2,點D在線段BC上,
①求證:∠BCE+∠BAC=180°;
②當四邊形ADCE的周長取最小值時,求BD的長.
(2)若∠BAC60° ,當點D在射線BC上移動,則∠BCE和∠BAC 之間有怎樣的數(shù)量關系?并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com