【題目】已知f(x)=sinxcosx+ cos2x﹣ ,將f(x)的圖象向右平移 個(gè)單位,再向上平移1個(gè)單位,得到y(tǒng)=g(x)的圖象.若對(duì)任意實(shí)數(shù)x,都有g(shù)(a﹣x)=g(a+x)成立,則 =(
A.
B.1
C.
D.0

【答案】D
【解析】解:∵f(x)=sinxcosx+ cos2x﹣ = sin2x+ =sin(2x+ ), 將f(x)的圖象向右平移 個(gè)單位,再向上平移1個(gè)單位,
得到y(tǒng)=g(x)=sin(2x﹣ + )+1=sin2x+1的圖象.
若對(duì)任意實(shí)數(shù)x,都有g(shù)(a﹣x)=g(a+x)成立,則g(x)的圖象關(guān)于直線x=a對(duì)稱,
再根據(jù)g(x)的周期為 =π,可得 =0,
故選:D.
【考點(diǎn)精析】本題主要考查了函數(shù)y=Asin(ωx+φ)的圖象變換的相關(guān)知識(shí)點(diǎn),需要掌握?qǐng)D象上所有點(diǎn)向左(右)平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)(縮短)到原來(lái)的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)(縮短)到原來(lái)的倍(橫坐標(biāo)不變),得到函數(shù)的圖象才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)y=ax2﹣2ax﹣1(a是常數(shù),a≠0),下列結(jié)論正確的是( )
A.當(dāng)a=1時(shí),函數(shù)圖象過(guò)點(diǎn)(﹣1,1)
B.當(dāng)a=﹣2時(shí),函數(shù)圖象與x軸沒(méi)有交點(diǎn)
C.若a>0,則當(dāng)x≥1時(shí),y隨x的增大而減小
D.若a<0,則當(dāng)x≤1時(shí),y隨x的增大而增大

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,⊙M與x軸相切于點(diǎn)A(8,0),與y軸分別交于點(diǎn)B(0,4)和點(diǎn)C(0,16),則圓心M到坐標(biāo)原點(diǎn)O的距離是( 。

A.10
B.8
C.4
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】宜賓市某化工廠,現(xiàn)有A種原料52千克,B種原料64千克,現(xiàn)用這些原料生產(chǎn)甲、乙兩種產(chǎn)品共20件.已知生產(chǎn)1件甲種產(chǎn)品需要A種原料3千克,B種原料2千克;生產(chǎn)1件乙種產(chǎn)品需要A種原料2千克,B種原料4千克,則生產(chǎn)方案的種數(shù)為(  )
A.4
B.5
C.6
D.7

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】當(dāng)a、b滿足條件a>b>0時(shí), =1表示焦點(diǎn)在x軸上的橢圓.若 =1表示焦點(diǎn)在x軸上的橢圓,則m的取值范圍是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線E:y2=4x的準(zhǔn)線為l,焦點(diǎn)為F,O為坐標(biāo)原點(diǎn).
(1)求過(guò)點(diǎn)O,F(xiàn),且與l相切的圓的方程;
(2)過(guò)F的直線交拋物線E于A,B兩點(diǎn),A關(guān)于x軸的對(duì)稱點(diǎn)為A′,求證:直線A′B過(guò)定點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐ABC﹣A1B1C1中,側(cè)面ACC1A1與側(cè)面CBB1C1都是菱形,∠ACC1=∠CC1B1=60°,AC=2
(1)求證:AB1⊥CC1;
(2)若AB1=3 ,D1為線段A1C1上的點(diǎn),且三棱錐C﹣B1C1D1的體積為 ,求

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) .(a為常數(shù),a>0) (Ⅰ)若 是函數(shù)f(x)的一個(gè)極值點(diǎn),求a的值;
(Ⅱ)求證:當(dāng)0<a≤2時(shí),f(x)在 上是增函數(shù);
(Ⅲ)若對(duì)任意的a∈(1,2),總存在 ,使不等式f(x0)>m(1﹣a2)成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】據(jù)某市地產(chǎn)數(shù)據(jù)研究院的數(shù)據(jù)顯示,2016年該市新建住宅銷售均價(jià)走勢(shì)如圖所示,為抑制房?jī)r(jià)過(guò)快上漲,政府從8月份采取宏觀調(diào)控措施,10月份開(kāi)始房?jī)r(jià)得到很好的抑制.
(Ⅰ)地產(chǎn)數(shù)據(jù)研究院研究發(fā)現(xiàn),3月至7月的各月均價(jià)y(萬(wàn)元/平方米)與月份x之間具有較強(qiáng)的線性相關(guān)關(guān)系,試建立y關(guān)于x的回歸方程(系數(shù)精確到0.01),政府若不調(diào)控,依次相關(guān)關(guān)系預(yù)測(cè)第12月份該市新建住宅銷售均價(jià);
(Ⅱ)地產(chǎn)數(shù)據(jù)研究院在2016年的12個(gè)月份中,隨機(jī)抽取三個(gè)月份的數(shù)據(jù)作樣本分析,若關(guān)注所抽三個(gè)月份的所屬季度,記不同季度的個(gè)數(shù)為X,求X的分布列和數(shù)學(xué)期望.
參考數(shù)據(jù): =25, =5.36, =0.64
回歸方程 = x+ 中斜率和截距的最小二乘估計(jì)公式分別為:
= , =

查看答案和解析>>

同步練習(xí)冊(cè)答案