【題目】如圖①,在平面直角坐標(biāo)系中,直線分別與軸、軸交于點(diǎn)、,且與直線交于點(diǎn),以線段為邊在直線的下方作正方形,此時(shí)點(diǎn)恰好落在軸上.

1)求出三點(diǎn)的坐標(biāo).

2)求直線的函數(shù)表達(dá)式.

3)在(2)的條件下,點(diǎn)是射線上的一個(gè)動點(diǎn),在平面內(nèi)是否存在點(diǎn),使得以、、、為頂點(diǎn)的四邊形是菱形?若存在,直接寫出點(diǎn)的坐標(biāo);若不存在,請說明理由.

【答案】1,,;(2;(3)存在,,,

【解析】

1)利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出點(diǎn)BC的坐標(biāo),聯(lián)立直線l1l2的解析式成方程組,通過解方程組可求出點(diǎn)A的坐標(biāo);
2)過點(diǎn)AAFy軸,垂足為點(diǎn)F,則△ACF≌△CDO,利用全等三角形的性質(zhì)可求出點(diǎn)D的坐標(biāo),根據(jù)點(diǎn)C,D的坐標(biāo),利用待定系數(shù)法即可求出直線CD的解析式;
3)分OC為對角線及OC為邊兩種情況考慮:①若OC為對角線,由菱形的性質(zhì)可求出點(diǎn)P的縱坐標(biāo),再利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出點(diǎn)P1的坐標(biāo);②若OC為邊,設(shè)點(diǎn)P的坐標(biāo)為(m2m6),分CPCOOPOC兩種情況,利用兩點(diǎn)間的距離公式可得出關(guān)于m的方程,解之取其負(fù)值,再將其代入點(diǎn)P的坐標(biāo)中即可得出點(diǎn)P2,P3的坐標(biāo).

1)∵直線,

當(dāng)時(shí),;當(dāng)時(shí),,

,

解方程組:得:,

點(diǎn)的坐標(biāo)為;

2)如圖1,作,則

∵四邊形為正方形,

,

,,

,

,

,

,,

,

設(shè)直線的解析式為,

、代入得:

解得:,

∴直線的解析式為

3)存在

為對角線時(shí),如圖2所示,

PQ垂直平分CO,

則點(diǎn)P的縱坐標(biāo)為:

當(dāng)y=3時(shí),,解得:x=

∴點(diǎn);

②以為邊時(shí),如圖2,設(shè)點(diǎn)P(m,2m+6),

當(dāng)CP=CO時(shí),,

解得:(舍去)

,

當(dāng)OP=OC時(shí),,

解得:(舍去)

綜上所述,在平面內(nèi)是否存在點(diǎn),使得以、、為頂點(diǎn)的四邊形是菱形,,,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知ABC的三個(gè)頂點(diǎn)坐標(biāo)分別是A(1,1),B(4,1),C(3,3).

(1)將ABC向下平移5個(gè)單位后得到A1B1C1,請畫出A1B1C1;

(2)將ABC繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后得到A2B2C2,請畫出A2B2C2;

(3)判斷以O,A1,B為頂點(diǎn)的三角形的形狀.(無須說明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)學(xué)課上,老師出了這樣一道題:甲、乙兩地相距1400km,乘高鐵列車從甲地到乙地比乘特快列車少用9h,已知高鐵列車的平均行駛速度是特快列車的2.8倍.求高鐵列車從甲地到乙地的時(shí)間.

老師要求同學(xué)先用列表方式分析再解答.下面是兩個(gè)小組分析時(shí)所列的表格:

小組甲:設(shè)特快列車的平均速度為km/h

時(shí)間/h

平均速度/km/h

路程/km

高鐵列車

1400

特快列車

1400

小組乙:高鐵列車從甲地到乙地的時(shí)間為h

時(shí)間/h

平均速度/km/h

路程/km

高鐵列車

1400

特快列車

1400

1)根據(jù)題意,填寫表格中空缺的量;

2)結(jié)合表格,選擇一種方法進(jìn)行解答.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線 y=﹣x+4 與坐標(biāo)軸分別交于 A,B 兩點(diǎn),把△AOB 繞點(diǎn)A 逆時(shí)針旋轉(zhuǎn) 90°后得到△AO′B′.

(1)寫出點(diǎn) A 的坐標(biāo),點(diǎn) B 的坐標(biāo);

(2)在方格中直接畫出△AO′B′;

(3)寫出點(diǎn) O′的坐標(biāo);點(diǎn) B′的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2016年某園林綠化公司購回一批香樟樹,全部售出后利潤率為20%.

(1)2016年每棵香樟樹的售價(jià)與成本的比值.

(2)2017年,該公司購入香樟樹數(shù)量增加的百分?jǐn)?shù)與每棵香樟樹成本降低的百分?jǐn)?shù)均為a,經(jīng)測算,若每棵香樟樹售價(jià)不變,則總成本將比2016年的總成本減少8萬元;若每棵香樟樹售價(jià)提高百分?jǐn)?shù)也為a,則銷售這批香樟樹的利潤率將達(dá)到4a.求a的值及相應(yīng)的2017年購買香樟樹的總成本.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將等腰繞底角頂點(diǎn)A逆時(shí)針旋轉(zhuǎn)15°后得到,如果,那么兩個(gè)三角形的重疊部分面積為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線與雙曲線交于A點(diǎn),且點(diǎn)A的橫坐標(biāo)是4.雙曲線上有一動點(diǎn)Cm,n, .過點(diǎn)A軸垂線,垂足為B,過點(diǎn)C軸垂線,垂足為D,聯(lián)結(jié)OC

1)求的值;

2)設(shè)的重合部分的面積為S,求Sm的函數(shù)關(guān)系;

3)聯(lián)結(jié)AC,當(dāng)?shù)冢?/span>2)問中S的值為1時(shí),求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,點(diǎn)邊上一點(diǎn),過點(diǎn),已知

1)若,求的度數(shù);

2)連接,過點(diǎn),延長于點(diǎn),若,求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD的對角線ACBD交于O,EF過點(diǎn)OAD,BC分別交于E,F,若AB4,BC5,OE1.5,則四邊形EFCD的周長_____

查看答案和解析>>

同步練習(xí)冊答案