某高中學(xué)校為高一新生設(shè)計(jì)的學(xué)生板凳的正面視圖如圖6424.其中BA=CD,BC=20 cm,BC,EF平行于地面AD且到地面AD的距離分別為40 cm,8 cm,為使板凳兩腿底端A,D之間的距離為50 cm,那么橫梁EF應(yīng)為多長(材質(zhì)及其厚度等暫忽略不計(jì))?
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
A,B兩點(diǎn)在一次函數(shù)圖象上的位置如圖3212,兩點(diǎn)的坐標(biāo)分別為A(x+a,y+b),B(x,y),下列結(jié)論正確的是( )
A.a>0 B.a<0 C.b=0 D.ab<0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖4360,在梯形ABCD中,AB∥DC,∠A+∠B=90°,AB=7 cm,BC=3 cm,AD=4 cm,則CD=______cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖6414,為估算某河的寬度,在河對(duì)岸邊選定一個(gè)目標(biāo)點(diǎn)A,在近岸取點(diǎn)B,C,D,使得AB⊥BC,CD⊥BC,點(diǎn)E在BC上,并且點(diǎn)A,E,D在同一條直線上.若測得BE=20 m,EC=10 m,CD=20 m,則河的寬度AB=( )
A. 60 m B. 40 m C. 30 m D. 20 m
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖6419,在平面直角坐標(biāo)系xOy中,點(diǎn)A,B的坐標(biāo)分別為(3,0),(2,-3),△AB′O′是△ABO關(guān)于點(diǎn)A的位似圖形,且O′的坐標(biāo)為(-1,0),則點(diǎn)B′的坐標(biāo)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖6117,已知四邊形ABCD是矩形,把矩形沿直線AC折疊,點(diǎn)B落在點(diǎn)E處,連接DE.若DE∶AC=3∶5,則的值為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
(1)觀察發(fā)現(xiàn).
如圖6124(1):若點(diǎn)A,B在直線m的同側(cè),在直線m上找一點(diǎn)P,使AP+BP的值最小,做法如下:作點(diǎn)B關(guān)于直線m的對(duì)稱點(diǎn)B′,連接AB′,與直線m的交點(diǎn)就是所求的點(diǎn)P,線段AB′的長度即為AP+BP的最小值.
如圖6124(2):在等邊三角形ABC中,AB=2,點(diǎn)E是AB的中點(diǎn),AD是高,在AD上找一點(diǎn)P,使BP+PE的值最小,做法如下:作點(diǎn)B關(guān)于AD的對(duì)稱點(diǎn),恰好與點(diǎn)C重合,連接CE交AD于一點(diǎn).則這就是所求的點(diǎn)P,故BP+PE的最小值為__________________.
圖6124
(2)實(shí)踐運(yùn)用.
如圖6124(3):已知⊙O的直徑CD為2,的度數(shù)為60°,點(diǎn)B是的中點(diǎn),在直徑CD上作出點(diǎn)P,使BP+AP的值最小,則BP+AP的最小值為________________.
(3)拓展延伸.
如圖6124(4):點(diǎn)P是四邊形ABCD內(nèi)一點(diǎn),分別在邊AB,BC上作出點(diǎn)M,N,使PM+PN的值最小,保留作圖痕跡,不寫作法.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com