O是正方形ABCD內一點,若△OAD是正三角形,則∠DCO=________.

75°
分析:根據(jù)正方形的四條邊都相等以及等邊三角形的三條邊都相等可得OD=CD,再根據(jù)正方形的角都是直角,等邊三角形的角都是60°,求出∠CDO=30°,然后利用三角形的內角和定理列式計算即可得解.
解答:解:如圖,∵四邊形ABCD是正方形,
∴AD=CD,∠ADC=90°,
∵△OAD是正三角形,
∴OD=AD,∠ADO=60°,
∴OD=CD,∠CDO=90°-60°=30°,
∴∠DOC=∠DCO(等邊對等角),
在△OCD中,∠DCO=(180°-30°)=75°.
故答案為:75°.
點評:本題考查了正方形的性質,等邊三角形的性質,求出△OCD是頂角為30°的等腰三角形是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,P是正方形ABCD內一點,將△ABP移到△CBP′位置,若BP=3,則PP′的長為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,點P是正方形ABCD內的一點,若PA=a,PB=2a,PC=3a,(a>0),那么∠APB的大小是(  )
A、100°B、120°C、135°D、150°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,P是正方形ABCD內一點,∠APB=135°,BP=1,AP=
7
.求PC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,P是正方形ABCD內一點,PA=a,PB=2a,PC=3a.將△APB繞點B按順時針方向旋轉,使A精英家教網(wǎng)B與BC重合,連接PP′,得到△PBP′.
(1)求證:△PBP′是等腰直角三角形;
(2)猜想△PCP′的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,點P是正方形ABCD內一點,連接AP、BP、CP、DP,若△ABP是等邊三角形.
(1)求證:△APD≌△BPC;
(2)求∠CPD的度數(shù).

查看答案和解析>>

同步練習冊答案