【題目】如圖⊙O的半徑為1cm,弦ABCD的長度分別為,則弦ACBD所夾的銳角

【答案】75°

【解析】試題分析:根據(jù)勾股定理的逆定理可證△AOB是等腰直角三角形,故可求∠OAB=∠OBA=45°,又由已知可證△COD是等邊三角形,所以∠ODC=∠OCD=60°,根據(jù)圓周角的性質可證∠CDB=∠CAB,而∠ODB=∠OBD,所以∠CAB+∠OBD=∠CDB+∠ODB=∠ODC=60°,再根據(jù)三角形的內角和定理可求α

解:連接OAOB、OC、OD,

∵OA=OB=OC=OD=1,AB=,CD=1,

∴OA2+OB2=AB2,

∴△AOB是等腰直角三角形,

△COD是等邊三角形,

∴∠OAB=∠OBA=45°,∠ODC=∠OCD=60°,

∵∠CDB=∠CAB,∠ODB=∠OBD

∴α=180°-∠CAB-∠OBA-∠OBD=180°-∠OBA-∠CDB+∠ODB=180°-45°-60°=75°

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】小明從家到學校上學,沿途需經(jīng)過三個路口,每個路口都設有紅、綠兩種顏色的信號燈,在信號燈正常情況下:

1)請用樹狀圖列舉小明遇到交通信號燈的所有情況;

2)小明遇到兩次綠色信號的概率有多大?

3)小明紅綠色兩種信號都遇到的概率有多大?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“你記得父母的生日嗎?”這是某中學在七年級學生中開展主題為“感恩”教育時 設置的一個問題,有以下四個選項:A.父母生日都記得;B.只記得母親生日;C.只 記得父親生日;D.父母生日都不記得.在隨機調查了(1)班和(2)班各 50 名學 生后,根據(jù)相關數(shù)據(jù)繪出如圖所示的統(tǒng)計圖.

1)補全頻數(shù)分布直方圖;

2)已知該校七年級共 900 名學生,據(jù)此推算,該校七年級學生中,“父母生日都 不記得”的學生共多少名?

3)若兩個班中“只記得母親生日”的學生占 22%,則(2)班“只記得母親生日” 的學生所占百分比是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若不等式3x6的解都能使關于x的一次不等式(m-1xm+5成立,且使關于x的分式方程= 有整數(shù)解,那么符合條件的所有整數(shù)m的值之和是______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線l1 :y=-3x+3x軸交于點D,直線l2經(jīng)過A(4,0)、B(3,)兩點,直線l1 與直線l2交于點C.

(1)求直線l2的解析式和點C的坐標;

(2) y軸上是否存在一點P,使得四邊形PDBC的周長最?若存在,請求出點P的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,四邊形ABCD是平行四邊形,AC、BD交于點O,∠1=∠2

1)求證:四邊形ABCD是矩形;(2)若∠BOC=120°,AB=4cm,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】等腰RtACB,∠ACB90°,ACBC,點A、C分別在x軸、y軸的正半軸上.

1)如圖1,求證:∠BCO=∠CAO

2)如圖2,若OA5OC2,求B點的坐標

3)如圖3,點C0,3),Q、A兩點均在x軸上,且SCQA18.分別以ACCQ為腰在第一、第二象限作等腰RtCAN、等腰RtQCM,連接MNy軸于P點,OP的長度是否發(fā)生改變?若不變,求出OP的值;若變化,求OP的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,A(a,0),B(0b),C-a,0),且+b2-4b+4=0

(1)求證:∠ABC=90°;

(2)ABO的平分線交x軸于點D,求D點的坐標.

(3)如圖,在線段AB上有兩動點MN滿足∠MON=45°,求證:BM2+AN2=MN2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,O是對角線AC的中點,過OAC的垂線與邊AD、BC分別交于EF。

1)求證:四邊形AFCE是菱形;

2)若AFBC,試猜想四邊形AFCE是什么特殊四邊形,并說明理由。

查看答案和解析>>

同步練習冊答案