【題目】如圖,在矩形ABCD 中,AB=4,AD=a,點PAD上,且AP=2,點E是邊AB上的動點,以PE為邊作直角∠EPF,射線PFBC于點F,連接EF,給出下列結論:①tanPFE=;②a的最小值為10.則下列說法正確的是( )

A.①②都對B.①②都錯C.①對②錯D.①錯②對

【答案】C

【解析】

,利用矩形ABCD四個直角,再加上∠EPF為直角,聯(lián)想到構造三垂直模型,故過FAD垂線,垂足為G,即有△AEP∽△GPF,且相似比為12,即求得tanPFE

②顯然,若a要取最小值,則F、C要重合(G、D重合),又AEPG為對應邊,AE越小則PGPD)越小,當AE=0時,PD=0最小,此時a=2

解:過點FFGAD于點G

∴∠FGP=90°

∵矩形ABCD中,AB=4,∠A=B=90°

∴四邊形ABFG是矩形,∠AEP+APE=90°

FG=AB=4

∵∠EPF=90°

∴∠APE+FPG=90°

∴∠AEP=FPG

∴△AEP∽△GPF

,故①正確;

如圖2,當A、E重合,CF重合,DP重合時,AD最短,此時a=2,故②錯誤.

故選擇:C.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】小飛研究二次函數(shù)y=-(x-m)2-m+1(m為常數(shù))性質(zhì)時如下結論:①這個函數(shù)圖象的頂點始終在直線y=-x+1上;②存在一個m的值,使得函數(shù)圖象的頂點與軸的兩個交點構成等腰直角三角形;③點A(x1,y1)與點B(x2,y2)在函數(shù)圖象上,若x1<x2,x1+x2>2m,則y1<y2;④當-1<x<2時,yx的增大而增大,則m的取值范圍為m≥2其中錯誤結論的序號是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點C在⊙O,AC=AB,動點P與點C位于直徑AB的異側,P在半圓弧AB上運動(不與A.B兩點重合),連結BP,過點C作直線PB的垂線CD交直線PBD點,連結CP.

(1)如圖1,在點P運動過程中,求∠CPD的度數(shù);

(2)如圖2,在點P運動過程中,當CPAB時,AC=2時,求△BPC的周長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,CDAB于點G,FCD上一點,且滿足=,連接AF并延長交⊙O于點E。 連接AD、DE,若CF=2,AF=3。給出下列結論:①ADFAED;②FG=2;③tanE=;④SDEF=4 其中正確的是(

A.①②④B.①②③C.②③④D.①③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)y=(x32+m的圖象與y軸交于點C,點B是點C關于該二次函數(shù)圖象的對稱軸對稱的點,已知一次函數(shù)ykx+b的圖象經(jīng)過該二次函數(shù)圖象上的點A10)及點B

1)求二次函數(shù)與一次函數(shù)的解析式;

2)拋物線上是否存在一點P,使SABPSABC?若存在,請求出點P的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,ABAC,以AC為直徑的⊙OAB于點D,交BC于點E

(1)求證:BECE

(2)BD2,BE3,求tanBAC的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,反比例函數(shù)y(x0)的圖象經(jīng)過矩形OABC對角線的交點M,分別與AB、BC相交于點D、E.若四邊形ODBE的面積為9,則k的值為(

A. 3B. 6C. 9D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面的材料:

解方程x4﹣7x2+12=0這是一個一元四次方程,根據(jù)該方程的特點,它的解法通常是:設x2=y,則x4=y2,原方程可化為:y2﹣7y+12=0,解得y1=3,y2=4,當y=3時,x2=3,x=±,當y=4時,x2=4,x=±2.原方程有四個根是:x1=,x2=﹣,x3=2,x4=﹣2,以上方法叫換元法,達到了降次的目的,體現(xiàn)了數(shù)學的轉化思想,運用上述方法解答下列問題.

(1)解方程:(x2+x)2﹣5(x2+x)+4=0;

(2)已知實數(shù)a,b滿足(a2+b22﹣3(a2+b2)﹣10=0,試求a2+b2的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形ABCD中,EAD的中點,已知△DEF的面積為S,則四邊形ABCE的面積為( 。

A. 8S B. 9S C. 10S D. 11S

查看答案和解析>>

同步練習冊答案