【題目】如圖,已知點C在⊙O上,AC=AB,動點P與點C位于直徑AB的異側(cè),點P在半圓弧AB上運動(不與A.B兩點重合),連結(jié)BP,過點C作直線PB的垂線CD交直線PB于D點,連結(jié)CP.
(1)如圖1,在點P運動過程中,求∠CPD的度數(shù);
(2)如圖2,在點P運動過程中,當CP⊥AB時,AC=2時,求△BPC的周長
【答案】(1)60°;(2)
【解析】
(1)由AC=AB,動點P與點C位于直徑AB的異側(cè),以求得∠ABC=30°,繼而可得出∠ CPD的度數(shù);(2)先證明△ CBP是等邊三角形,再求出BC的長,最后求出△ CBP的周長
(1) ∵AB是直徑,
∴∠ACB=90°,
∵AC=AB,
∴∠ABC=30°,
∴∠A=90°∠ABC=60°,
∴∠CPD=∠A=60°;
(2)∵∠A=60°
∴∠BPC=∠A=60°
∵PC⊥AB,AB是直徑
∴=
∴∠ABP=∠ABC=30°
∴∠CPB=60°
∴△CBP是等邊三角形
∴BP=BC=CP
∵AC=2
∴BC=AC=
∴△BCP的周長=BP+BC+CP=
科目:初中數(shù)學 來源: 題型:
【題目】某縣有A、B兩個大型蔬菜基地,共有蔬菜700噸.若將A基地的蔬菜全部運往甲市所需費用與B基地的蔬菜全部運往甲市所需費用相同.從A、B兩基地運往甲、乙兩市的運費單價如下表:
(1)求A、B兩個蔬菜基地各有蔬菜多少噸?
(2)現(xiàn)甲市需要蔬菜260噸,乙市需要蔬菜440噸.設從A基地運送噸蔬菜到甲市,請問怎樣調(diào)運可使總運費最少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我市茶葉專賣店銷售某品牌茶葉,其進價為每千克 240 元,按每千克 400 元出售,平均每周可售出 200 千克,后來經(jīng)過市場調(diào)查發(fā)現(xiàn),單價每降低 10 元,則平均每周的銷售量可增加 40 千克,若該專賣店銷售這種品牌茶葉要想平均每周獲利 41600 元,請回答:
(1)每千克茶葉應降價多少元?
(2)在平均每周獲利不變的情況下,為盡可能讓利于顧客,贏得市場,該店應按原售價的 幾折出售?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC中,已知∠C=90°,∠B=55°,點D在邊BC上,BD=2CD.把線段BD 繞著點D逆時針旋轉(zhuǎn)α(0<α<180)度后,如果點B恰好落在Rt△ABC的邊上,那么α=__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=x2+x﹣6與x軸兩個交點分別是A、B(點A在點B的左側(cè)).
(1)求A、B的坐標;
(2)利用函數(shù)圖象,寫出y<0時,x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小英同時擲甲、乙兩個質(zhì)地均勻的骰子(6個面上分別標有1,2,3,4,5,6這6個數(shù)字).記甲朝上的一面數(shù)字為x,乙朝上的一面數(shù)字為y,這樣確定點P的一個坐標(x,y),那么點P落在y=上的概率是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,點O為原點,平行于x軸的直線與拋物線L:y=ax2相交于A,B兩點(點B在第一象限),點D在AB的延長線上.
(1)已知a=1,點B的縱坐標為2.
①如圖1,向右平移拋物線L使該拋物線過點B,與AB的延長線交于點C,求AC的長.
②如圖2,若BD=AB,過點B,D的拋物線L2,其頂點M在x軸上,求該拋物線的函數(shù)表達式.
(2)如圖3,若BD=AB,過O,B,D三點的拋物線L3,頂點為P,對應函數(shù)的二次項系數(shù)為a3,過點P作PE∥x軸,交拋物線L于E,F兩點,求的值,并直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD 中,AB=4,AD=a,點P在AD上,且AP=2,點E是邊AB上的動點,以PE為邊作直角∠EPF,射線PF交BC于點F,連接EF,給出下列結(jié)論:①tan∠PFE=;②a的最小值為10.則下列說法正確的是( )
A.①②都對B.①②都錯C.①對②錯D.①錯②對
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,點E是CD的中點,將△BCE沿BE折疊后得到△BEF、且點F在矩形ABCD的內(nèi)部,將BF延長交AD于點G.若,則=__.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com