【題目】如圖,已知△ABC中,AC=BC,∠ACB=90°,直角∠DFE的頂點(diǎn)F是AB中點(diǎn),兩邊FD,FE分別交AC,BC于點(diǎn)D,E兩點(diǎn),當(dāng)∠DFE在△ABC內(nèi)繞頂點(diǎn)F旋轉(zhuǎn)時(點(diǎn)D不與A,C重合),給出以下個結(jié)論:①CD=BE;②四邊形CDFE不可能是正方形;③△DFE是等腰直角三角形;④S四邊形CDFE=S△ABC.上述結(jié)論中始終正確的有______.(填序號)
【答案】①③④
【解析】
首先連接CF,由等腰直角三角形的性質(zhì)可得:,則證得∠DCF=∠B,∠DFC=∠EFB,然后可證得:△DCF≌△EBF,由全等三角形的性質(zhì)可得CD=BE,DF=EF,也可證得S四邊形CDFE=S△ABC.問題得解.
解:連接CF,
∵AC=BC,∠ACB=90°,點(diǎn)F是AB中點(diǎn),
∴∠DCF=∠B=45°,
∵∠DFE=90°,
∴∠DFC+∠CFE=∠CFE+∠EFB=90°,
∴∠DFC=∠EFB,
∴△DCF≌△EBF,
∴CD=BE,故①正確;
∴DF=EF,
∴△DFE是等腰直角三角形,故③正確;
∴S△DCF=S△BEF,
∴S四邊形CDFE=S△CDF+S△CEF=S△EBF+S△CEF=S△CBF=S△ABC.,故④正確.
若EF⊥BC時,則可得:四邊形CDFE是矩形,
∵DF=EF,
∴四邊形CDFE是正方形,故②錯誤.
∴結(jié)論中始終正確的有①③④.
故答案為:①③④.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為平行四邊形,過點(diǎn)B作BE⊥AB交AD于點(diǎn)E,將線段BE繞點(diǎn)E順時針旋轉(zhuǎn)90°到EF的位置,點(diǎn)M(點(diǎn)M不與點(diǎn)B重合)在直線AB上,連結(jié)EM.
(1)當(dāng)點(diǎn)M在線段AB的延長線上時,將線段EM繞點(diǎn)E順時針旋轉(zhuǎn)90°到EN1的位置,連結(jié)FN1,在圖中畫出圖形,求證:FN1⊥AB;
(2)當(dāng)點(diǎn)M在線段BA的延長線上時,將線段EM繞點(diǎn)E順時針旋轉(zhuǎn)90°到EN2的位置,連結(jié)FN2,在圖中畫出圖形,點(diǎn)N2在直線FN1上嗎?請說明理由;
(3)若AB=3,AD=6,DE=1,設(shè)BM=x,在(1)、(2)的條件下,試用含x的代數(shù)式表示△FMN的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了預(yù)防流感,某學(xué)校在星期天用藥熏消毒法對教室進(jìn)行消毒.已知藥物釋放過程中,室內(nèi)每立方米空氣中的含藥量y(毫克)與時間x(小時)成正比例;藥物釋放完畢后,y與x成反比例,如圖所示.根據(jù)以上信息解答下列問題:
(1)求藥物釋放完畢后,y與x之間的函數(shù)關(guān)系式并寫出自變量的取值范圍;
(2)據(jù)測定,當(dāng)空氣中每立方米的含藥量降低到0.25毫克以下時,學(xué)生方可進(jìn)入教室,那么,從星期天下午5:00開始對某教室釋放藥物進(jìn)行消毒,到星期一早上7:00時學(xué)生能否進(jìn)入教室?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,CE平分∠BCD,且交AD于點(diǎn)E,AF∥CE,且交BC于點(diǎn)F.
(1)求證:△ABF≌△CDE;
(2)如圖,若∠B=52°,求∠1的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC 中,D 是 BC 邊的中點(diǎn),E、F 分別在 AD 及其延長線上,CE∥BF,連接BE、CF.
(1)求證:△BDF ≌△CDE;
(2)若 DE =BC,試判斷四邊形 BFCE 是怎樣的四邊形,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠A=90°,O是BC邊上一點(diǎn),以O為圓心的半圓與AB邊相切于點(diǎn)D,與AC、BC邊分別交于點(diǎn)E、F、G,連接OD,已知BD=2,AE=3,tan∠BOD=.
(1)求⊙O的半徑OD;
(2)求證:AE是⊙O的切線;
(3)求圖中兩部分陰影面積的和.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某面粉廠從生產(chǎn)的袋裝面粉中抽出樣品20袋,檢測每袋的質(zhì)量是否符合標(biāo)準(zhǔn),超過、不足的部分分別用正、負(fù)數(shù)來表示,記錄如下表:
與標(biāo)準(zhǔn)質(zhì)量的差值(單位:千克) | -0.3 | -0.2 | -0.1 | 0 | 0.1 | 0.2 |
袋數(shù) | 3 | 2 | 4 | 6 | 3 | 2 |
(1)這批樣品中最多的一袋比最少的一袋多多少千克?
(2)這20袋面粉的總質(zhì)量比標(biāo)準(zhǔn)的質(zhì)量多(或少)多少千克?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校初一年級參加社會實(shí)踐課,報名第一門課的有x人,第二門課的人數(shù)比第一門課的少20人,現(xiàn)在需要從報名第二門課的人中調(diào)出10人學(xué)習(xí)第一門課,那么用含x的式子解答下題.
(1)報兩門課的共有多少人?
(2)調(diào)動后,報名第一門課比報名第二門課多多少人?計(jì)算出代數(shù)式后,請選擇一個你覺得合適的x值代入,并求出具體人數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com