【題目】如圖,在平行四邊形ABCD中,E、F是對(duì)角線BD上的兩點(diǎn),且BE=DF.
(1)求證:AE=CF;
(2)連接AF、CE,判斷四邊形AECF的形狀,并證明。
【答案】(1)詳見(jiàn)解析;(2)詳見(jiàn)解析.
【解析】
(1)根據(jù)平行四邊形的性質(zhì)可得AB=CD,AB∥CD,然后可證明∠ADB=∠CBD,再利用SAS來(lái)判定△AED≌△CFB即可得解;
(2)首先根據(jù)全等三角形的性質(zhì)可得,∠AEF=∠CFE,于是AE∥CF,從而可得四邊形AECF是平行四邊形.
證明:(1)∵四邊形ABCD是平行四邊形,
∴AB=CD,AB∥DC.
∴∠ABE=∠CDF.
又BE=DF,
∴△ABE≌△CDF.
∴AE=CF.
(2)∵△ABE≌△CDF,
∴∠AEB=∠CFD.
∴∠AEF∠CFE.
∴AE∥CF.
∴四邊形AECF為平行四邊形。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,將坐標(biāo)原點(diǎn)O沿x軸向左平移2個(gè)單位長(zhǎng)度得到點(diǎn)A,過(guò)點(diǎn)A作y軸的平行線交反比例函數(shù)y=的圖象于點(diǎn)B,AB=.
(1)求反比例函數(shù)的解析式;
(2)若P(x1,y1)、Q(x2,y2)是該反比例函數(shù)圖象上的兩點(diǎn),且x1<x2時(shí),y1>y2,指出點(diǎn)P、Q各位于哪個(gè)象限?并簡(jiǎn)要說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在矩形ABCD中,AB=6cm,BC=8cm,E、F分別是AB、BD的中點(diǎn),連接EF,點(diǎn)P從點(diǎn)E出發(fā),沿EF方向勻速運(yùn)動(dòng),速度為1cm/s,同時(shí),點(diǎn)Q從點(diǎn)D出發(fā),沿DB方向勻速運(yùn)動(dòng),速度為2cm/s,當(dāng)點(diǎn)P停止運(yùn)動(dòng)時(shí),點(diǎn)Q也停止運(yùn)動(dòng).連接PQ,設(shè)運(yùn)動(dòng)時(shí)間為t(0<t<4)s,解答下列問(wèn)題:
(1)求證:△BEF∽△DCB;
(2)當(dāng)點(diǎn)Q在線段DF上運(yùn)動(dòng)時(shí),若△PQF的面積為0.6cm2,求t的值;
(3)如圖2過(guò)點(diǎn)Q作QG⊥AB,垂足為G,當(dāng)t為何值時(shí),四邊形EPQG為矩形,請(qǐng)說(shuō)明理由;
(4)當(dāng)t為何值時(shí),△PQF為等腰三角形?試說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,把矩形OABC放入平面直角坐標(biāo)系xO中,使OA、OC分別落在x、y軸的正半軸上,其中AB=15,對(duì)角線AC所在直線解析式為y=﹣x+b,將矩形OABC沿著BE折疊,使點(diǎn)A落在邊OC上的點(diǎn)D處.
(1)求點(diǎn)B的坐標(biāo);
(2)求EA的長(zhǎng)度;
(3)點(diǎn)P是y軸上一動(dòng)點(diǎn),是否存在點(diǎn)P使得△PBE的周長(zhǎng)最小,若存在,請(qǐng)求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=BC,點(diǎn)D是線段AB上的一點(diǎn),連接CD,過(guò)點(diǎn)B作BG⊥CD,分別交CD,CA于點(diǎn)E,F,與過(guò)點(diǎn)A且垂直于AB的直線相交于點(diǎn)G,連接DF.給出以下四個(gè)結(jié)論:①②若點(diǎn)D是AB的中點(diǎn),則AF=AB;③當(dāng)B,C,F,D四點(diǎn)在同一個(gè)圓上時(shí),DF=DB;④若,則,其中正確的結(jié)論序號(hào)是( )
A. ①② B. ③④ C. ①②③ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】兩地相距千米,甲、乙兩人都從地去地,圖中和分別表示甲、乙兩人所走路程(千米)與時(shí)間(小時(shí))之間的關(guān)系.對(duì)于下列說(shuō)法:①乙晚出發(fā)小時(shí);②乙出發(fā)小時(shí)后追上甲;③甲的速度是千米/小時(shí);④乙先到達(dá)地,其中正確的個(gè)數(shù)是( )
A.個(gè)B.3個(gè)C.2個(gè)D.1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,⊙O的半徑為r(r>0),若點(diǎn)P′在射線OP上,滿足OP′OP=r2,則稱點(diǎn)P′是點(diǎn)P關(guān)于⊙O的“反演點(diǎn)”.
如圖2,⊙O的半徑為4,點(diǎn)B在⊙O上,∠BOA=60°,OA=8,若點(diǎn)A′,B′分別是點(diǎn)A,B關(guān)于⊙O的反演點(diǎn),求A′B′的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)軸上兩點(diǎn)、對(duì)應(yīng)的數(shù)分別為-1、3,點(diǎn)為數(shù)軸上一動(dòng)點(diǎn),其對(duì)應(yīng)的數(shù)為.
(1)若點(diǎn)到點(diǎn)、點(diǎn)的距離相等,則點(diǎn)對(duì)應(yīng)的數(shù)為 ;
(2)利用數(shù)軸探究:找出滿足的的所有值是 ;
(3)當(dāng)點(diǎn)以每秒6個(gè)單位長(zhǎng)的速度從0點(diǎn)向右運(yùn)動(dòng)時(shí),點(diǎn)以每秒6個(gè)單位長(zhǎng)的速度向右運(yùn)動(dòng),點(diǎn)以每秒鐘5個(gè)單位長(zhǎng)的速度向右運(yùn)動(dòng),問(wèn)它們同時(shí)出發(fā),幾秒后點(diǎn)到點(diǎn)、點(diǎn)的距離相等?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:在數(shù)軸上A點(diǎn)表示數(shù),B點(diǎn)示數(shù),C點(diǎn)表示數(shù),是最小的正整數(shù),且、滿足.
(1)=__________,=__________,=__________;
(2)若將數(shù)軸折疊,使得A點(diǎn)與C點(diǎn)重合,則點(diǎn)B與數(shù)__________表示的點(diǎn)重合;
(3)若點(diǎn)A、點(diǎn)B和點(diǎn)C分別以每秒2個(gè)單位、1個(gè)單位長(zhǎng)度和4個(gè)單位長(zhǎng)度的速度在數(shù)軸上同時(shí)向左運(yùn)動(dòng),假設(shè)秒鐘過(guò)后,A、B、C三點(diǎn)中恰有一點(diǎn)為另外兩點(diǎn)的中點(diǎn),求的值;
(4)若點(diǎn)A、點(diǎn)B和點(diǎn)C分別以每秒2個(gè)單位、1個(gè)單位長(zhǎng)度和4個(gè)單位長(zhǎng)度的速度在數(shù)軸上同時(shí)向左運(yùn)動(dòng)時(shí),小聰同學(xué)發(fā)現(xiàn):當(dāng)點(diǎn)C在B點(diǎn)右側(cè)時(shí),BC+3AB的值是個(gè)定值,求此時(shí)的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com