【題目】如圖,拋物線y=ax2+bx+c經(jīng)過A(1,0)、B(4,0)、C(0,3)三點.
(1)求拋物線的解析式;
(2)在拋物線的對稱軸上是否存在點P,使得四邊形PAOC的周長最。咳舸嬖,求出四邊形PAOC周長的最小值;若不存在,請說明理由.
(3)如圖②,點Q是線段OB上一動點,連接BC,在線段BC上是否存在這樣的點M,使△CQM為等腰三角形且△BQM為直角三角形?若存在,求點M的坐標;若不存在,請說明理由.
【答案】
(1)解:根據(jù)題意設拋物線的解析式為y=a(x﹣1)(x﹣4),
代入C(0,3)得3=4a,
解得a= ,
y= (x﹣1)(x﹣4)= x2﹣ x+3,
所以,拋物線的解析式為y= x2﹣ x+3
(2)解:∵A、B關于對稱軸對稱,如圖1,連接BC,
∴BC與對稱軸的交點即為所求的點P,此時PA+PC=BC,
∴四邊形PAOC的周長最小值為:OC+OA+BC,
∵A(1,0)、B(4,0)、C(0,3),
∴OA=1,OC=3,BC= =5,
∴OC+OA+BC=1+3+5=9;
∴在拋物線的對稱軸上存在點P,使得四邊形PAOC的周長最小,四邊形PAOC周長的最小值為9.
(3)解:∵B(4,0)、C(0,3),
∴直線BC的解析式為y=﹣ x+3,
①當∠BQM=90°時,如圖2,設M(a,b),
∵∠CMQ>90°,
∴只能CM=MQ=b,
∵MQ∥y軸,
∴△MQB∽△COB,
∴ = ,即 = ,解得b= ,代入y=﹣ x+3得, =﹣ a+3,解得a= ,
∴M( , );
②當∠QMB=90°時,如圖3,
∵∠CMQ=90°,
∴只能CM=MQ,
設CM=MQ=m,
∴BM=5﹣m,
∵∠BMQ=∠COB=90°,∠MBQ=∠OBC,
∴△BMQ∽△BOC,
∴ = ,解得m= ,
作MN∥OB,
∴ = = ,即 = = ,
∴MN= ,CN= ,
∴ON=OC﹣CN=3﹣ = ,
∴M( , ),
綜上,在線段BC上存在這樣的點M,使△CQM為等腰三角形且△BQM為直角三角形,點M的坐標為( , )或( , ).
【解析】(1)由拋物線y=ax2+bx+c經(jīng)過A(1,0)、B(4,0)、C(0,3)三點,用待定系數(shù)法求出解析式;(2)由A、B關于對稱軸對稱,得到BC與對稱軸的交點即為所求的點P,由A(1,0)、B(4,0)、C(0,3),得到OA=1,OC=3,BC =5,OC+OA+BC=1+3+5=9;所以在拋物線的對稱軸上存在點P,使得四邊形PAOC的周長最小,四邊形PAOC周長的最小值為9;(3)由B(4,0)、C(0,3),所以直線BC的解析式為y=﹣ x+3,①當∠BQM=90°時,設M(a,b),由∠CMQ>90°,得到只能CM=MQ=b,因為MQ∥y軸,所以△MQB∽△COB,得到 比例,求出M的坐標;②當∠QMB=90°時,由∠CMQ=90°,得到只能CM=MQ,得到△BMQ∽△BOC,得到比例,解得m= ,由MN∥OB,得到比例,求出M( , ),在線段BC上存在這樣的點M,使△CQM為等腰三角形且△BQM為直角三角形,點M的坐標為( , )或( , ).
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩人在筆直的湖邊公路上同起點、同終點、同方向勻速步行2 400 m,先到終點的人原地休息.已知甲先出發(fā)4 min,在整個步行過程中,甲、乙兩人的距離y(m)與甲出發(fā)的時間t(min)之間的關系如圖所示,以下結論:①甲步行的速度為60 m/min;②乙走完全程用了32 min;③乙用16 min追上甲;④乙到達終點時,甲離終點還有300 m,其中正確的結論有______(填序號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=1,與x軸的一個交點坐標為(﹣1,0),其部分圖象如圖所示,
下列結論:
①4ac<b2;
②方程ax2+bx+c=0的兩個根是x1=﹣1,x2=3;
③3a+c>0
④當y>0時,x的取值范圍是﹣1≤x<3
⑤當x<0時,y隨x增大而增大
其中結論正確的個數(shù)是( )
A.4個
B.3個
C.2個
D.1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場銷售每個進價為150元和120元的A、B兩種型號的足球,如表是近兩周的銷售情況:
銷售時段 | 銷售數(shù)量 | 銷售收入 | |
A種型號 | B種型號 | ||
第一周 | 3個 | 4個 | 1200元 |
第二周 | 5個 | 3個 | 1450元 |
進價、售價均保持不變,利潤銷售收入進貨成本
(1)求A、B兩種型號的足球的銷售單價;
(2)若商場準備用不多于8400元的金額再購進這兩種型號的足球共60個,求A種型號的足球最多能采購多少個?
(3)在的條件下,商場銷售完這60個足球能否實現(xiàn)利潤超過2550元,若能,請給出相應的采購方案;若不能請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,DE是△ABC邊AB的垂直平分線,分別交AB、BC于D、E。AE平分∠BAC. 設∠B = x(單位:度),∠C = y(單位:度).
(1)求y隨x變化的函數(shù)關系式,并寫出自變量x的取值范圍;
(2)請討論當△ABC為等腰三角形時,∠B為多少度?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一動點從原點O出發(fā),沿著箭頭所示方向,每次移動一個單位,依次得到點P1(0,1),P2(1,1),P3(1,0),P4(1,1),P5(2,1),P6(2,0)...,則點P2017的坐標是( )
A.(672,0)B.(672,1)C.(673,1)D.(673,0)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】探索研究:已知:△ABC和△CDE都是等邊三角形.
(1)如圖1,若點A、C、E在一條直線上時,我們可以得到結論:線段AD與BE的數(shù)量關系為: ,線段AD與BE所成的銳角度數(shù)為 °;
(2)如圖2,當點A、C、E不在一條直線上時,請證明(1)中的結論仍然成立;
靈活運用:
如圖3,某廣場是一個四邊形區(qū)域ABCD,現(xiàn)測得:AB=60m,BC=80m,且∠ABC=30°,∠DAC=∠DCA=60°,試求水池兩旁B、D兩點之間的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】△ABC中,BC=a,AC=b,AB=c,若∠C=90°,如圖(1),根據(jù)勾股定理,則a2+b2=c2,若△ABC不是直角三角形,如圖(2)和圖(3),請你類比勾股定理,試猜想a2+b2與c2的關系,并證明你的結論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com