【題目】已知:如圖,二次函數(shù)y=x2+(2k﹣1)x+k+1的圖象與x軸相交于O、A兩點(diǎn).
(1)求這個(gè)二次函數(shù)的解析式;
(2)在這條拋物線的對(duì)稱軸右邊的圖象上有一點(diǎn)B,使銳角△AOB的面積等于3.求點(diǎn)B的坐標(biāo).
【答案】(1)y=x2-3x,(2)(4,4).
【解析】試題分析:(1)將原點(diǎn)坐標(biāo)代入拋物線中即可求出k的值,也就得出了拋物線的解析式.
(2)根據(jù)(1)得出的拋物線的解析式可得出A點(diǎn)的坐標(biāo),也就求出了OA的長(zhǎng),根據(jù)△OAB的面積可求出B點(diǎn)縱坐標(biāo)的絕對(duì)值,然后將符合題意的B點(diǎn)縱坐標(biāo)代入拋物線的解析式中即可求出B點(diǎn)的坐標(biāo),然后根據(jù)B點(diǎn)在拋物線對(duì)稱軸的右邊來判斷得出的B點(diǎn)是否符合要求即可.
試題解析:①∵函數(shù)的圖象與x軸相交于O,
∴0=k+1,
∴k=-1,
∴y=x2-3x,
②假設(shè)存在點(diǎn)B,過點(diǎn)B做BD⊥x軸于點(diǎn)D,
∵△AOB的面積等于6,
∴AOBD=6,
當(dāng)0=x2-3x,
x(x-3)=0,
解得:x=0或3,
∴AO=3,
∴BD=4
即4=x2-3x,
解得:x=4或x=-1(舍去).
又∵頂點(diǎn)坐標(biāo)為:(1.5,-2.25).
∵2.25<4,
∴x軸下方不存在B點(diǎn),
∴點(diǎn)B的坐標(biāo)為:(4,4).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列運(yùn)算正確的是( )
A. a6÷a2=a3B. (a2)3=a5C. a3a2=a6D. 3a2﹣a2=2a2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若點(diǎn)A(m,n)在第三象限,則點(diǎn)B(|n|,|m|)所在的象限是( )
A. 第一象限B. 第二象限C. 第三象限D. 第四象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖甲,AB⊥BD,CD⊥BD,AP⊥PC,垂足分別為B、P、D,且三個(gè)垂足在同一直線上,我們把這樣的圖形叫“三垂圖”.
(1)證明:ABCD=PBPD.
(2)如圖乙,也是一個(gè)“三垂圖”,上述結(jié)論成立嗎?請(qǐng)說明理由.
(3)已知拋物線與x軸交于點(diǎn)A(-1,0),B(3,0),與y軸交于點(diǎn)(0,-3),頂點(diǎn)為P,如圖丙所示,若Q是拋物線上異于A、B、P的點(diǎn),使得∠QAP=90°,求Q點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在下列所給的坐標(biāo)的點(diǎn)中,在第二象限的是( )
A. (1,-2)B. (-1,-4)C. (-2,5)D. (0,1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若不等式(a-3)x>a-3的解集為x>1,則( )
A. a>3 B. a<3 C. a≠3 D. a為任何數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)P(-3,7)在( )
A. 第一象限B. 第二象限C. 第三象限D. 第四象限
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com