(本小題滿分14分)

如圖所示,拋物線經(jīng)過原點(diǎn),與軸交于另一點(diǎn),直線與兩坐標(biāo)軸分別交于、兩點(diǎn),與拋物線交于、兩點(diǎn).

1.(1)求直線與拋物線的解析式;

2.(2)若拋物線在軸上方的部分有一動(dòng)點(diǎn)

的面積最大值;

3.(3)若動(dòng)點(diǎn)保持(2)中的運(yùn)動(dòng)路線,問是否存在點(diǎn)

,使得的面積等于面積的?若存在,請求出點(diǎn)的坐標(biāo);

若不存在,請說明理由.

 

【答案】

 

1.解:(1)把點(diǎn)B、C的坐標(biāo)代入

                       解方程組得

                    直線的解析式是…………(2分)

                   把點(diǎn)O、B、C的坐標(biāo)代入

                                      解方程組得 

                    拋物線的解析式是…………(4分)

2.(2) 配方得

                    頂點(diǎn)坐標(biāo)是…………(5分)

         當(dāng)y = 0時(shí),     點(diǎn)N(,0)…………(6分)

         當(dāng)P點(diǎn)運(yùn)動(dòng)到頂點(diǎn)的位置時(shí),的面積最大,最大值是:

         …………(8分)

3.(3)不存在…………(9分)

                   直線x軸的交點(diǎn)D(4,0),與y軸交點(diǎn)A(0,4)

                      

 ∴ ,

                   ∴         ∴ …………(11分)

                   ∵ 點(diǎn)P在上,且位于軸的上方,

      ∴   代入

得到,即,

                   ∴ ,它們與 矛盾               

                   ∴ 點(diǎn)P不存在

即在拋物線上不存在點(diǎn)P,使得的面積等于面積的

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

25.(本小題滿分14分)

如圖13,二次函數(shù)的圖象與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C(0,-1),ΔABC的面積為。

(1)求該二次函數(shù)的關(guān)系式;

(2)過y軸上的一點(diǎn)M(0,m)作y軸上午垂線,若該垂線與ΔABC的外接圓有公共點(diǎn),求m的取值范圍;

(3)在該二次函數(shù)的圖象上是否存在點(diǎn)D,使四邊形ABCD為直角梯形?若存在,求出點(diǎn)D的坐標(biāo);若不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011廣西崇左,25,14分)(本小題滿分14分)已知拋物線y=x2+4x+mm為常數(shù))

經(jīng)過點(diǎn)(0,4).

(1)       求m的值;

(2)       將該拋物線先向右、再向下平移得到另一條拋物線.已知平移后的拋物線滿足下述兩個(gè)條件:它的對稱軸(設(shè)為直線l2)與平移前的拋物線的對稱軸(設(shè)為直線l1)關(guān)于y軸對稱;它所對應(yīng)的函數(shù)的最小值為-8.

① 試求平移后的拋物線的解析式;

② 試問在平移后的拋物線上是否存在點(diǎn)P,使得以3為半徑的圓P既與x軸相切,又與直線l2相交?若存在,請求出點(diǎn)P的坐標(biāo),并求出直線l2被圓P所截得的弦AB的長度;若不存在,請說明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(本小題滿分14分)
已知:如圖,拋物線與y軸交于點(diǎn)C(0,), 與x軸交于點(diǎn)A、 B,點(diǎn)A的坐標(biāo)為(2,0).

(1)求該拋物線的解析式;
(2)點(diǎn)P是線段AB上的動(dòng)點(diǎn),過點(diǎn)P作PD∥BC,交AC于點(diǎn)D,連接CP.當(dāng)△CPD的面積最大時(shí),求點(diǎn)P的坐標(biāo);
(3)若平行于x軸的動(dòng)直線與該拋物線交于點(diǎn)Q,與直線BC交于點(diǎn)F,點(diǎn)M 的坐標(biāo)為(,0).問:是否存在這樣的直線,使得△OMF是等腰三角形?若存  在,請求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年廣東省蘿崗區(qū)初中畢業(yè)班綜合測試數(shù)學(xué)卷 題型:解答題

(本小題滿分14分)
如圖1,拋物線y軸交于點(diǎn)A,E(0,b)為y軸上一動(dòng)點(diǎn),過點(diǎn)E的直線與拋物線交于點(diǎn)B、C.
 
【小題1】(1)求點(diǎn)A的坐標(biāo);
【小題2】(2)當(dāng)b=0時(shí)(如圖2),求的面積。
【小題3】(3)當(dāng)時(shí),的面積大小關(guān)系如何?為什么?
【小題4】(4)是否存在這樣的b,使得是以BC為斜邊的直角三角形,若存在,求出b;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年初中畢業(yè)升學(xué)考試(內(nèi)蒙古赤峰卷)數(shù)學(xué) 題型:解答題

(2011廣西崇左,25,14分)(本小題滿分14分)已知拋物線y=x2+4x+mm為常數(shù))

經(jīng)過點(diǎn)(0,4).

(1)       求m的值;

(2)       將該拋物線先向右、再向下平移得到另一條拋物線.已知平移后的拋物線滿足下述兩個(gè)條件:它的對稱軸(設(shè)為直線l2)與平移前的拋物線的對稱軸(設(shè)為直線l1)關(guān)于y軸對稱;它所對應(yīng)的函數(shù)的最小值為-8.

①  試求平移后的拋物線的解析式;

②  試問在平移后的拋物線上是否存在點(diǎn)P,使得以3為半徑的圓P既與x軸相切,又與直線l2相交?若存在,請求出點(diǎn)P的坐標(biāo),并求出直線l2被圓P所截得的弦AB的長度;若不存在,請說明理由.

 

查看答案和解析>>

同步練習(xí)冊答案