【題目】有一條拋物線,三位學(xué)生分別說(shuō)出了它的一些性質(zhì):
甲說(shuō):對(duì)稱軸是直線x=2;
乙說(shuō):與x軸的兩個(gè)交點(diǎn)距離為6;
丙說(shuō):頂點(diǎn)與x軸的交點(diǎn)圍成的三角形面積等于9,請(qǐng)你寫(xiě)出滿足
上述全部條件的一條拋物線的解析式:

【答案】y=﹣ (x﹣2)2+3或y= (x﹣2)2﹣3.
【解析】解:根據(jù)題意得:拋物線與x軸的兩個(gè)交點(diǎn)的坐標(biāo)為(﹣1,0),(5,0),頂點(diǎn)坐標(biāo)為(2,3)或(2,﹣3),
設(shè)函數(shù)解析式為y=a(x﹣2)2+3或y=a(x﹣2)2﹣3;
把點(diǎn)(5,0)代入y=a(x﹣2)2+3得a=﹣ ;
把點(diǎn)(5,0)代入y=a(x﹣2)2﹣3得a= ;
∴滿足上述全部條件的一條拋物線的解析式為y=﹣ (x﹣2)2+3或y= (x﹣2)2﹣3.
根據(jù)對(duì)稱軸是直線x=2,與x軸的兩個(gè)交點(diǎn)距離為6,所以與x軸的兩個(gè)交點(diǎn)的坐標(biāo)為(-1,0),(5,0),再根據(jù)頂點(diǎn)與x軸的交點(diǎn)圍成的三角形面積等于9,可得頂點(diǎn)的縱坐標(biāo)為±3,得頂點(diǎn)坐標(biāo)為(2,3)或(2,-3),然后利用頂點(diǎn)式求得拋物線的解析式即可。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)不透明的盒子中裝有顏色不同的8個(gè)小球,其中紅球3個(gè),黑球5個(gè).

(1)先從袋中取出m(m>1)個(gè)紅球,再?gòu)拇须S機(jī)摸出1個(gè)球,將摸出黑球記為事件A.請(qǐng)完成下列表格:

事件A

必然事件

隨機(jī)事件

m的值

(2)先從袋中取出m個(gè)紅球,再放入m個(gè)一樣的黑球并搖勻,隨機(jī)摸出1個(gè)球是黑球的概率是,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知:射線PO與⊙O交于A、B兩點(diǎn),PC、PD分別切⊙O于點(diǎn)C、D.

(1)請(qǐng)寫(xiě)出兩個(gè)不同類型的正確結(jié)論;
(2)若CD=12,tan∠CPO= ,求PO的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】完成下列填空.

如圖,已知∠B+BCD=180°,∠B=D.求證:∠E=DFE.

證明:∵∠B+BCD=180°(已知),

ABCD .

∴∠B=DCE .

又∵∠B=D(已知 ,

___________ ( 等量代換 ).

ADBE(內(nèi)錯(cuò)角相等,兩直線平行)

∴∠E=DFE .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知A、B兩地相距10千米,上午9:00甲騎電動(dòng)車(chē)從A地出發(fā)到B地,9:10乙開(kāi)車(chē)從B地出發(fā)到A地,甲、乙兩人距A 地距離y(千米)與甲所用的時(shí)間x(分)之間的關(guān)系如圖所示。

(1)甲的速度是 千米/分。

(2)乙的速度是 千米/分,乙到達(dá)A地的時(shí)間是

(3)甲、乙兩人相距4千米的時(shí)間是 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知∠AOB90°,OC為一條射線,OE,OF分別平分∠AOC,∠BOC,那么∠EOF 的度數(shù)為_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,有若干個(gè)橫縱坐標(biāo)分別為整數(shù)的點(diǎn),其順序按圖中“→”方向排列,如(102,0211,1122,2,,根據(jù)這個(gè)規(guī)律,第2019個(gè)點(diǎn)的坐標(biāo)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC 中,點(diǎn)OAC邊上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)O作直線MNBC,設(shè)MN交∠BCA的角平分線于點(diǎn)E,交∠BCA的外角平分線于點(diǎn)F

1)求證:EO=FO;

2)當(dāng)點(diǎn)O運(yùn)動(dòng)到何處時(shí),四邊形AECF是矩形?并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將八個(gè)邊長(zhǎng)為1的小正方形擺放在平面直角坐標(biāo)系中,若過(guò)原點(diǎn)的直線l將圖形分成面積相等的兩部分,則將直線l向右平移3個(gè)單位后所得直線l′的函數(shù)關(guān)系式為

查看答案和解析>>

同步練習(xí)冊(cè)答案