【題目】如圖,在△ABC 中,點(diǎn)O是AC邊上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)O作直線MN∥BC,設(shè)MN交∠BCA的角平分線于點(diǎn)E,交∠BCA的外角平分線于點(diǎn)F
(1)求證:EO=FO;
(2)當(dāng)點(diǎn)O運(yùn)動(dòng)到何處時(shí),四邊形AECF是矩形?并證明你的結(jié)論.
【答案】(1)見(jiàn)解析;(2) 當(dāng)O運(yùn)動(dòng)到OA=OC處,四邊形AECF是矩形.理由見(jiàn)解析.
【解析】
(1)由于CE平分∠BCA,那么有∠1=∠2,而MN∥BC,利用平行線的性質(zhì)有∠1=∠3,等量代換有∠2=∠3,于OE=OC,同理OC=OF,于是OE=OF;
(2)OA=OC,那么可證四邊形AECF是平行四邊形,又CE、CF分別是∠BCA及其外角的角平分線,易證∠ECF是90°,從而可證四邊形AECF是矩形.
(1)當(dāng)點(diǎn)O運(yùn)動(dòng)到AC中點(diǎn)時(shí),四邊形AECF是矩形;理由如下:
如圖所示:
∵CE平分∠BCA,
∴∠1=∠2,
又∵MN∥BC,
∴∠1=∠3,
∴∠3=∠2,
∴EO=CO,
同理,FO=CO,
∴EO=FO;
(2)當(dāng)O運(yùn)動(dòng)到OA=OC處,四邊形AECF是矩形.理由如下:
∵OA=OC,
∴四邊形AECF是平行四邊形,
∵CF是∠BCA的外角平分線,
∴∠4=∠5,
又∵∠1=∠2,
∴∠1+∠5=∠2+∠4,
又∵∠1+∠5+∠2+∠4=180°,
∴∠2+∠4=90°,
∴平行四邊形AECF是矩形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD邊長(zhǎng)為4cm,以正方形的一邊BC為直徑在正方形ABCD內(nèi)作半圓,過(guò)A作半圓的切線,與半圓相切于F點(diǎn),與DC相交于E點(diǎn),則△ADE的面積( 。
A.12
B.24
C.8
D.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一條拋物線,三位學(xué)生分別說(shuō)出了它的一些性質(zhì):
甲說(shuō):對(duì)稱軸是直線x=2;
乙說(shuō):與x軸的兩個(gè)交點(diǎn)距離為6;
丙說(shuō):頂點(diǎn)與x軸的交點(diǎn)圍成的三角形面積等于9,請(qǐng)你寫出滿足
上述全部條件的一條拋物線的解析式: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的正方形網(wǎng)格中,每個(gè)小方格的邊長(zhǎng) 為 1,點(diǎn) A、B、C 是格點(diǎn).
(1)計(jì)算:AB= ;BC= ;AC= ;
(2)只用直尺(不帶刻度)作出 AB 邊上的高 CH(保留作圖 痕跡)CH= ;
(3)只用直尺(不帶刻度)作出 AC 邊上的高 BG(保留作圖痕跡).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,BC的垂直平分線EF交BC于點(diǎn)D,交AB于點(diǎn)E,且BE=BF,添加一個(gè)條件,仍不能證明四邊形BECF為正方形的是
A. BC=AC B. CF⊥BF C. BD=DF D. AC=BF
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)C是⊙O上一點(diǎn),AD與過(guò)點(diǎn)C的切線垂直,垂足為點(diǎn)D,直線DC與AB的延長(zhǎng)線相交于點(diǎn)P,CE平分∠ACB,交AB于點(diǎn)E.
(1)求證:AC平分∠DAB;
(2)求證:△PCE是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,直線a∥b,直線c與直線a、b分別相交于C、D兩點(diǎn),直線d與直線a、b分別相交于A、B兩點(diǎn),點(diǎn)P在直線AB上運(yùn)動(dòng)(不與A、B兩點(diǎn)重合).
(1)如圖1,當(dāng)點(diǎn)P在線段AB上運(yùn)動(dòng)時(shí),總有:∠CPD=∠PCA+∠PDB,請(qǐng)說(shuō)明理由;
(2)如圖2,當(dāng)點(diǎn)P在線段AB的延長(zhǎng)線上運(yùn)動(dòng)時(shí),∠CPD、∠PCA、∠PDB之間有怎樣的數(shù)量關(guān)系,并說(shuō)明理由;
(3)如圖3,當(dāng)點(diǎn)P在線段BA的延長(zhǎng)線上運(yùn)動(dòng)時(shí),∠CPD、∠PCA、∠PDB之間又有怎樣的數(shù)量關(guān)系(只需直接給出結(jié)論)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知,線段直線,垂足為,平移線段,使點(diǎn)與點(diǎn)重合,點(diǎn)的對(duì)應(yīng)點(diǎn)記為點(diǎn).
操作與思考:
(1)畫出線段和直線;
(2)直線與的位置關(guān)系是_______,理由是:____________________________;
線段與的數(shù)量關(guān)系是_______,理由是:____________________________.
實(shí)踐與應(yīng)用:
(3)如圖,等邊和等邊的面積分別為3和5,點(diǎn)、、在一直線上,則的面積是_____________.
(4)如圖,網(wǎng)格中每個(gè)小正方形的邊長(zhǎng)為1,請(qǐng)用三種不同方法,求出的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一個(gè)角的兩邊與另一個(gè)角的兩邊分別平行,請(qǐng)結(jié)合圖,探索這兩個(gè)角之間的關(guān)系,并說(shuō)明理由.
(1)如圖①,AB∥CD,BE∥DF,∠1與∠2的關(guān)系是 ;
證明:
(2)如圖②,AB∥CD,BE∥DF,∠1與∠2的關(guān)系是 ;
證明:
(3)經(jīng)過(guò)上述證明,我們可得出結(jié)論,如果一個(gè)角的兩邊與另一個(gè)角的兩邊分別平行,那么這兩個(gè)角 ;
(4)若這兩個(gè)角的兩邊分別平行,且一個(gè)角比另一個(gè)角的3倍少60°,則這兩個(gè)角分別是多少度?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com