【題目】已知如圖,四邊形OABC為菱形,A點的坐標為,對角線OB、AC相交于D點,雙曲線
經(jīng)過D點,交BC的延長線于E點,且
,則E點的坐標是
A. B.
C.
D.
【答案】B
【解析】分析:作DH⊥x軸于H,BG⊥x軸于G,根據(jù)菱形的面積等于對角線乘積的一半得到菱形OABC的面積=OBAC=
×160=80;則△ODA的面積為20,根據(jù)三角形面積公式可計算出DA=4,再根據(jù)菱形的性質易得DH為△OBG的中位線,則BG=8,所以E點的縱坐標為8;接著證明Rt△DOH∽Rt△ADH,得到DH2=OHAH,由于DH=4,AH=10-OH,則OH(10-OH)=16,解得OH=8或OH=2(舍去),可確定D點坐標為(8,4),利用待定系數(shù)法得到反比例函數(shù)解析式為,同時可確定E點坐標.
詳解:作DH⊥x軸于H,BG⊥x軸于G,如圖,
∵四邊形OABC為菱形, ∴菱形OABC的面積=OBAC=
×160=80,
∴DHOA=菱形OABC的面積的
=
×80, 而A點的坐標為(10,0),
∴DH×10=
×80, ∴DH=4, ∵OB與AC互相垂直平分,
∴∠ADO=90°,DH為△OBG的中位線, ∴BG=2DH=8, ∴E點的縱坐標為8,
∵∠DOH+∠ODH=∠ODH+∠ADH=90°,∴∠DOH=∠ADH,
∴Rt△DOH∽Rt△ADH, ∴DH:AH=OH:DH,即DH2=OHAH,
∵DH=4,AH=OA-OH=10-OH, ∴OH(10-OH)=16,解得OH=8或OH=2(舍去),
∴D點坐標為(8,4), 把D(8,4)代入y=得k=4×8=32,
∴反比例函數(shù)解析式為y=, 把y=8代入得
=8,解得x=4, ∴E點坐標為(4,8).
科目:初中數(shù)學 來源: 題型:
【題目】為了加強公民的節(jié)水意識,合理利用水資源,我市采用價格調控的手段達到節(jié)水的目的,我市自來水收費的價目表如下表:
價目表 | |
每月用水量 | 單價 |
不超出6m3的部分 | 3元/m3 |
超出6m3不超出10m3的部分 | 5元/m3 |
超出10m3的部分 | 9元/m3 |
注:水費按月結算 |
請根據(jù)如表的內容解答下列問題:
(1)填空:若該戶居民2月份用水4m3,則應收水費_______元;
(2)若該戶居民3月份用水am3(其中6m3<a<10m3),則應收水費多少元?(用含a的代數(shù)式表示,并化簡)
(3)若該戶居民4、5兩個月共用水15m3(5月份用水量超過了4月份),設4月份用水xm3,求該戶居民4、5兩個月共交水費多少元?(用含x的代數(shù)式表示,并化簡)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A是x軸非負半軸上的動點,點B坐標為(0,4),M是線段AB的中點,將點M繞點A順時針方向旋轉90°得到點C,過點C作x軸的垂線,垂足為F,過點B作y軸的垂線與直線CF相交于點E,連接AC,BC,設點A的橫坐標為t.
(Ⅰ)當t=2時,求點M的坐標;
(Ⅱ)設ABCE的面積為S,當點C在線段EF上時,求S與t之間的函數(shù)關系式,并寫出自變量t的取值范圍;
(Ⅲ)當t為何值時,BC+CA取得最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將一列有理數(shù)-1,2,-3,4,-5,6,……,如圖所示有序排列.根據(jù)圖中的排列規(guī)律可知,“峰1”中峰頂?shù)奈恢?/span>(C的位置)是有理數(shù)4.則-2019應排在A,B,C,D,E中______的位置.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D是BA延長線上的一點,點E是AC的中點.
(1)實踐與操作:利用尺規(guī)按下列要求作圖,并在圖中標明相應字母(保留作圖痕跡,不寫作法).
①作∠DAC的平分線AM;
②連接BE并延長交AM于點F;
③連接FC.
(2)猜想與證明:猜想四邊形ABCF的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形紙片ABCD中,AB=6,BC=8.把△BCD沿對角線BD折疊,使點C落在C′處,BC′交AD于點G;E、F分別是C′D和BD上的點,線段EF交AD于點H,把△FDE沿EF折疊,使點D落在D′處,點D′恰好與點A重合.
(1)求證:△ABG≌△C′DG;
(2)求tan∠ABG的值;
(3)求EF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直角△ABC的三個頂點分別是A(﹣3,1),B(0,3),C(0,1)
(1)將△ABC以點C為旋轉中心旋轉180°,畫出旋轉后對應的△A1B1C1;
(2)分別連結AB1、BA1后,求四邊形AB1A1B的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】圖1是一個長為2m,寬為2n的長方形,沿圖中虛線用剪刀均分成四塊小長方形,然后按圖2的方法拼成一個邊長為(m+n)的正方形.
⑴ 請用兩種不同的方法求圖2中陰影部分的面積.
方法1: ;方法2: ;
⑵ 觀察圖2寫出,
,
三個代數(shù)式之間的等量關系: ;
⑶ 根據(jù)⑵中你發(fā)現(xiàn)的等量關系,解決如下問題:若,求
的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】觀察思考:
(1)在∠AOB內部畫1條射線OC,則圖中有3個不同的角;
(2)在∠AOB內部畫2條射線OC、OD,則圖中有幾個不同的角?
(3)3條射線呢?你能發(fā)現(xiàn)什么規(guī)律,表示出n條射線能有幾個不同的角?
請你先解答以上問題,再結合已學過的知識,針對類似的圖形也提出三個問題并作答.(要求:畫出圖形,寫出題干,提出問題并作答)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com