如圖,在直角坐標(biāo)系中,已知點(diǎn)A(-3,0),B(0,4),對△OAB連續(xù)作旋轉(zhuǎn)變換,依次得到三角形①,②,③,④…,則三角形⑩的直角頂點(diǎn)的坐標(biāo)為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2016屆山東濟(jì)南歷城區(qū)九年級二模數(shù)學(xué)數(shù)學(xué)試卷(解析版) 題型:選擇題

如圖, D,E分別是△ABC邊AB,BC上的點(diǎn),AD=2BD,BE=CE,若,則四邊形BEFD的面積為

A.5 B.7 C.9 D.10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2016屆山東聊城莘縣九年級第一次模擬檢測數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,以△ABC的BC邊上一點(diǎn)O為圓心的圓,經(jīng)過A,B兩點(diǎn),且與BC邊交于點(diǎn)E,D為BE的下半圓弧的中點(diǎn),連接AD交BC于F,AC=FC.

(1)求證:AC是⊙O的切線;

(2)已知圓的半徑R=5,EF=3,求DF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2016屆山東聊城莘縣九年級第一次模擬檢測數(shù)學(xué)試卷(解析版) 題型:選擇題

小明在學(xué)習(xí)了正方形之后,給同桌小文出了道題,從下列四個(gè)條件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中選兩個(gè)作為補(bǔ)充條件,使?ABCD為正方形(如圖),現(xiàn)有下列四種選法,你認(rèn)為其中錯(cuò)誤的是( )

A.①② B.②③ C.①③ D.②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2016屆山東泰安新泰市中考模擬試卷(四)數(shù)學(xué)試卷(解析版) 題型:解答題

某市種植某種綠色蔬菜,全部用來出口.為了擴(kuò)大出口規(guī)模,該市決定對這種蔬菜的種植實(shí)行政府補(bǔ)貼,規(guī)定每種植-畝這種蔬菜一次性補(bǔ)貼菜農(nóng)若干元.經(jīng)調(diào)查,種植畝數(shù)y(畝)與補(bǔ)貼數(shù)額x(元)之間大致滿足如圖1所示的一次函數(shù)關(guān)系.隨著補(bǔ)貼數(shù)額x的不斷增大,出口量也不斷增加,但每畝蔬菜的收益z(元)會相應(yīng)降低,且z與x之間也大致滿足如圖2所示的一次函數(shù)關(guān)系.

(1)在政府未出臺補(bǔ)貼措施前,該市種植這種蔬菜的總收益額為多少?

(2)分別求出政府補(bǔ)貼政策實(shí)施后,種植畝數(shù)y和每畝蔬菜的收益z與政府補(bǔ)貼數(shù)額x之間的函數(shù)關(guān)系式;

(3)要使全市這種蔬菜的總收益w(元)最大,政府應(yīng)將每畝補(bǔ)貼數(shù)額x定為多少?并求出總收益w的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2016屆山東泰安新泰市中考模擬試卷(四)數(shù)學(xué)試卷(解析版) 題型:選擇題

如圖,△ABC為等邊三角形,點(diǎn)E在BA的延長線上,點(diǎn)D在BC邊上,且ED=EC.若△ABC的邊長為4,AE=2,則BD的長為( )

A.2 B.3 C. D.+1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2016屆山東泰安新泰市中考模擬試卷(四)數(shù)學(xué)試卷(解析版) 題型:選擇題

已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,那么一次函數(shù)y=bx+c和反比例函數(shù)y=在同一平面直角坐標(biāo)系中的圖象大致是( )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2016屆山東棗莊山亭區(qū)中考一模試卷數(shù)學(xué)試卷(解析版) 題型:填空題

如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,⊙O的半徑為2,∠B=135°,則的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2016屆四川南充5月份中考模擬數(shù)學(xué)試卷(解析版) 題型:解答題

幾何模型:

條件:如圖,A、B是直線l同旁的兩個(gè)定點(diǎn).

問題:在直線l上確定一點(diǎn)P,使PA+PB的值最。

方法:作點(diǎn)A關(guān)于直線l的對稱點(diǎn)A′,連結(jié)A′B交l于點(diǎn)P,則PA+PB=A′B的值最。ú槐刈C明).

模型應(yīng)用:

(1)如圖1,正方形ABCD的邊長為2,E為AB的中點(diǎn),P是AC上一動(dòng)點(diǎn).連結(jié)BD,由正方形對稱性可知,B與D關(guān)于直線AC對稱.連結(jié)ED交AC于P,則PB+PE的最小值是

(2)如圖2,⊙O的半徑為2,點(diǎn)A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一動(dòng)點(diǎn),求PA+PC的最小值;

(3)如圖3,∠AOB=45°,P是∠AOB內(nèi)一點(diǎn),PO=10,Q、R分別是OA、OB上的動(dòng)點(diǎn),求△PQR周長的最小值.

查看答案和解析>>

同步練習(xí)冊答案