【題目】如圖,點(diǎn)C在線段AB上,AC=6cm,MB=10cm,點(diǎn)M、N分別為AC、BC的中點(diǎn).

(1)求線段BC的長;

(2)求線段MN的長;

(3)若C在線段AB延長線上,且滿足AC﹣BC=b cm,M,N分別是線段AC,BC的中點(diǎn),你能猜想MN的長度嗎?請寫出你的結(jié)論(不需要說明理由).

【答案】(1)7cm.(2)6.5cm(3)MN=

【解析】

試題分析:(1)根據(jù)線段中點(diǎn)的性質(zhì),可得MC的長,根據(jù)線段的和差,可得BC的長;

(2)根據(jù)線段中點(diǎn)的性質(zhì),可得MC、NC的長,根據(jù)線段的和差,可得MN的長;

(3)根據(jù)(1)(2)的結(jié)論,即可解答.

解:(1)AC=6cm,點(diǎn)M是AC的中點(diǎn),

=3cm,

BC=MB﹣MC=10﹣3=7cm.

(2)N是BC的中點(diǎn),

CN=BC=3.5cm,

MN=MC+CN=3+3.5=6.5cm

(3)如圖,

MN=MC﹣NC==(AC﹣BC)=b.

MN=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)點(diǎn)A(x1 , y1)和點(diǎn)B(x2 , y2)是反比例函數(shù)y= 圖象上的兩點(diǎn),當(dāng)x1<x2<0時(shí),y1>y2 , 則一次函數(shù)y=﹣2x+k的圖象不經(jīng)過的象限是(
A.第一象限
B.第二象限
C.第三象限
D.第四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在四邊形ABCD中,ADBC,EAB邊上一點(diǎn),BCE=15°,EFADDC于點(diǎn)F.

(1)依題意補(bǔ)全圖形,求∠FEC的度數(shù)

(2)若∠A=140°,求∠AEC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖點(diǎn)A在數(shù)軸上對應(yīng)的數(shù)為2,若點(diǎn)B也在數(shù)軸上且線段AB的長為4,CAB的中點(diǎn)則點(diǎn)C在數(shù)軸上對應(yīng)的數(shù)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】實(shí)驗(yàn)室里,水平桌面上有甲、乙、丙三個(gè)圓柱形容器(容器足夠高),底面半徑之比為121,用兩個(gè)相同的管子在容器的5 cm高度處連通(即管子底離容器底5 cm),現(xiàn)三個(gè)容器中只有甲中有水,水位高1 cm,如圖所示.若每分鐘同時(shí)向乙和丙注入相同量的水,開始注水1分鐘,乙的水位上升cm.

(1)開始注水1分鐘丙的水位上升________cm;

(2)開始注入________分鐘的水量后乙的水位比甲高0.5 cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)y=﹣2x+2的圖象與x軸、y軸分別交于點(diǎn)A,B.在y軸左側(cè)有一點(diǎn)P(﹣1,a).

(1)如圖1,以線段AB為直角邊在第一象限內(nèi)作等腰RtABC,且∠BAC=90°,求點(diǎn)C的坐標(biāo);

2)當(dāng)a=時(shí),求△ABP的面積;

(3)當(dāng)a=﹣2時(shí),點(diǎn)Q是直線y=﹣2x+2上一點(diǎn),且△POQ的面積為5,求點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,頂點(diǎn)為M的拋物線y=a(x+1)2﹣4分別與x軸相交于點(diǎn)A,B(點(diǎn)A在點(diǎn)B的右側(cè)),與y軸相交于點(diǎn)C(0,﹣3).

(1)求拋物線的函數(shù)表達(dá)式;
(2)判斷△BCM是否為直角三角形,并說明理由.
(3)拋物線上是否存在點(diǎn)N(點(diǎn)N與點(diǎn)M不重合),使得以點(diǎn)A,B,C,N為頂點(diǎn)的四邊形的面積與四邊形ABMC的面積相等?若存在,求出點(diǎn)N的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB、CD相交于點(diǎn)O,OE平分∠BOD

1∠AOC=70°,∠DOF=90°,求∠EOF的度數(shù);

2OF平分∠COE,∠BOF=15°,若設(shè)∠AOE=x°

用含x的代數(shù)式表示∠EOF;

∠AOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖示,三角形ABC是等邊三角形,DBC邊上的一點(diǎn),三角形ABD經(jīng)過旋轉(zhuǎn)后到達(dá)三角形ACE的位置.

(1)旋轉(zhuǎn)中心是哪一點(diǎn)?

(2)旋轉(zhuǎn)了多少度?

(3)如果MAB的中點(diǎn),那么經(jīng)過上述旋轉(zhuǎn)后,點(diǎn)M到了什么位置?

查看答案和解析>>

同步練習(xí)冊答案