【題目】如圖,在□中, 是上一點,且,與的延長線交點.
(1)求證:△∽△;
(2)若△的面積為1,求□ 的面積.
【答案】(1)證明見解析;(2)24
【解析】
(1)利用平行線的性質(zhì)得到∠ABF=∠E,即可證得結(jié)論;
(2)根據(jù)平行線的性質(zhì)證明△ABF∽△DEF,即可求出S△ABF=9 ,再根據(jù)AD=BC=4DF,求出S△CBE =16,即可求出答案.
證明:(1)在□ABCD中,∠A=∠C,AB∥CD,
∴∠ABF=∠E,
∴△ABF∽△CEB;
(2)在□ABCD中,AD∥BC,
∴△DEF∽△CEB,
又∵△ABF∽△CEB
∴ △ABF∽△DEF,
∵AF=3DF,△DEF的面積為1,
∴S△ABF=9 ,
∵AD=BC=4DF,
∴S△CBE =16,
∴□ABCD的面積=9+15=24.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為加快5G網(wǎng)絡(luò)建設(shè),某移動通信公司在山頂上建了一座5G信號通信塔AB,山高BE=100米(A,B,E在同一直線上),點C與點D分別在E的兩側(cè)(C,E,D在同一直線上),BE⊥CD,CD之間的距離1000米,點D處測得通信塔頂A的仰角是30°,點C處測得通信塔頂A的仰角是45°(如圖),則通信塔AB的高度約為( 。┟祝▍⒖紨(shù)據(jù):,)
A.350B.250C.200D.150
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,AE,CF分別是∠BAD和∠BCD的平分線,添加一個條件,仍無法判斷四邊形AECF為菱形的是( )
A. AE=AFB. EF⊥ACC. ∠B=60°D. AC是∠EAF的平分線
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為激發(fā)學(xué)生的閱讀興趣,培養(yǎng)學(xué)生良好的閱讀習(xí)慣,我區(qū)某校欲購進(jìn)一批學(xué)生喜歡的圖書,學(xué)校組織學(xué)生會隨機抽取部分學(xué)生進(jìn)行問卷調(diào)查,被調(diào)查學(xué)生須從“文史類、社科類、小說類、生活類”中選擇自己喜歡的一類,根據(jù)調(diào)查結(jié)果繪制了統(tǒng)計圖(未完成),請根據(jù)圖中信息,解答下列問題:
(1)填空或選擇:此次共調(diào)查了______名學(xué)生;圖2中“小說類”所在扇形的圓心角為______度;學(xué)生會采用的調(diào)查方式是______.A.普查 B.抽樣調(diào)查
(2)將條形統(tǒng)計圖(圖1)補充完整;
(3)若該校共有學(xué)生2500人,試估計該校喜歡“社科類”書籍的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是半圓的直徑,點C是的中點,點D是的中點,連接DB、AC交于點E,則∠DAB=_______,_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,AD⊥BC于點D,點E是線段AD上的一個動點,連接EC,線段EC繞點E順時針旋轉(zhuǎn)60°得到線段EF,連接DF、BF,已知AD=5cm,BC=8cm,設(shè)AE=xcm,DF=y1cm,BF=y2cm.小王根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,分別對函數(shù)y1,y2隨自變量x的變化而變化的規(guī)律進(jìn)行了探究.
下面是小王的探究過程,請補充完整:
(1)對照下表中自變量x的值進(jìn)行取點,畫圖,測量,分別得到了y1,y2與x的幾組對應(yīng)值:
x/cm | 0 | 1 | 2 | 3 | 4 | 5 |
y1/cm | 2.52 | 2.07 | 2.05 | 2.48 |
| 4.00 |
y2/cm | 1.93 | 2.93 | 3.93 | 4.93 | 5.93 | 6.93 |
(2)在同一平面直角坐標(biāo)系xOy中,描出補全后的表中各組數(shù)值所對應(yīng)的點(x,y1),(x,y2),并畫出函數(shù)y1,y2的圖象:
(3)結(jié)合函數(shù)圖象,解決問題:
①當(dāng)AE的長度約為_______cm時,DF最小;
②當(dāng)△BDF是以BF為腰的等腰三角形時,AE的長度約為______cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的對角線OB,AC相交于點D,且BE∥AC,AE∥OB,
(1)求證:四邊形AEBD是菱形;
(2)如果OA=3,OC=2,求出經(jīng)過點E的反比例函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線與軸交于點,其對稱軸與軸交于點.
(1)求點、的坐標(biāo).
(2)若直線與直線關(guān)于該拋物線的對稱軸對稱,該拋物線在這一段位于直線的上方,并且在這一段位于直線的下方,求該拋物線的解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com