【題目】一個正六邊形和兩個等邊三角形的位置如圖所示,3=70°,則∠1+2=__

【答案】50°

【解析】

先在∠1、∠3、∠2的頂點分別標(biāo)上字母A、B、C.根據(jù)正六邊形及正三角形的性質(zhì)用∠1表示出∠BAC,用∠2表示出∠ACB,用∠3表示出∠ABC,再由三角形內(nèi)角和定理即可得出結(jié)論.

解:如圖,

∵圖中是一個正六邊形和兩個等邊三角形,
∴∠BAC=180°-1-120°=60°-1

ACB=180°-2-60°=120°-2,

ABC=180°-60°-3=120°-3,
∵∠3=70°,
∴∠ABC=180°-60°-3=120°-70°=50°
∵∠BAC+ACB+ABC=180°

60°-1+120°-2+50°=180°,
∴∠1+2=50°
故答案是:50°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A、B兩地相距150km,甲、乙兩人先后從A地出發(fā)向B地行駛,甲騎摩托車勻速行駛,乙開汽車且途中速度只改變一次,如圖表示的是甲、乙兩人之間的距離S關(guān)于時間t的函數(shù)圖象(點F的實際意義是乙開汽車到達(dá)B地),請根據(jù)圖象解答下列問題:

(1)求出甲的速度;

(2)求出乙前后兩次的速度,并求出點E的坐標(biāo);

(3)當(dāng)甲、乙兩人相距10km時,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點C10),直線y=-x+7與兩坐標(biāo)軸分別交于A,B兩點,D,E分別是AB, OA上的動點,則CDE周長的最小值是_____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程(組)及不等式解應(yīng)用題

某種型號油、電混合動力汽車,從A地到B地使用純?nèi)加托旭偟馁M用為76元;從A地到B地使用純電行駛的費用為26元.已知每行駛1千米用純?nèi)加托旭偟馁M用比用純電行駛的費用多0.5元.

(1)求用純電行駛1千米的費用為多少元?

(2)若要使從A地到B地油電混合行駛所需的油和電總費用不超過39元,則至少用電行駛多少千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點P、Q是邊長為4cm的等邊△ABCABBC上的動點,點P從頂點A,點Q從頂點B同時出發(fā),且它們的速度都為1cm/s,連接AQ、CP交于點M,則在P、Q運(yùn)動的過程中,下列結(jié)論錯誤的是(

A.BP=CM

B.ABQ≌△CAP

C.CMQ的度數(shù)不變,始終等于60°

D.當(dāng)?shù)?/span>秒或第秒時,△PBQ為直角三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校九(1)、九(2)兩班的班長交流了為四川安雅地震災(zāi)區(qū)捐款的情況:

)九(1)班班長說:我們班捐款總數(shù)為1200元,我們班人數(shù)比你們班多8人.

)九(2)班班長說:我們班捐款總數(shù)也為1200元,我們班人均捐款比你們班人均捐款多20%

請根據(jù)兩個班長的對話,求這兩個班級每班的人均捐款數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某加油站五月份營銷一種油品的銷售利潤(萬元)與銷售量(萬升)之間函數(shù)關(guān)系的圖象如圖中折線所示,該加油站截止到13日調(diào)價時的銷售利潤為4萬元,截止至15日進(jìn)油時的銷售利潤為5.5萬元.(銷售利潤=(售價-成本價)×銷售量)

請你根據(jù)圖象及加油站五月份該油品的所有銷售記錄提供的信息,解答下列問題:

(1)求銷售量為多少時,銷售利潤為4萬元;

(2)分別求出線段ABBC所對應(yīng)的函數(shù)關(guān)系式;

(3)我們把銷售每升油所獲得的利潤稱為利潤率,那么,在OA、AB、BC三段所表示的銷售信息中,哪一段的利潤率最大?(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線1垂直于x軸,垂足為M(m,0),點A(﹣1.0)關(guān)于直線的對稱點為A′.

探究:(1)當(dāng)m=0時,A′的坐標(biāo)為   

(2)當(dāng)m=1時,A′的坐標(biāo)為   

(3)當(dāng)m=2時,A′的坐標(biāo)為   ;

發(fā)現(xiàn):對于任意的m,A′的坐標(biāo)為   

解決問題:若A(﹣1,0)B(﹣5,0),C(6,0),D(15,0),將線段AB沿直線l翻折得到線段A′B′,若線段A′B′與線段CD重合部分的長為2,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點P的坐標(biāo)為(0,2),直線y=與x軸、y軸分別交于點A,B,點M是直線AB上的一個動點,則PM長的最小值為( )

A.3 B.4 C.5 D.6

查看答案和解析>>

同步練習(xí)冊答案