【題目】如圖,點P、Q是邊長為4cm的等邊△ABC邊AB、BC上的動點,點P從頂點A,點Q從頂點B同時出發(fā),且它們的速度都為1cm/s,連接AQ、CP交于點M,則在P、Q運動的過程中,下列結論錯誤的是( )
A.BP=CM
B.△ABQ≌△CAP
C.∠CMQ的度數(shù)不變,始終等于60°
D.當?shù)?/span>秒或第秒時,△PBQ為直角三角形
【答案】A
【解析】
A、等邊三角形ABC中,AB=BC,而AP=BQ,所以BP=CQ;
B、根據(jù)等邊三角形的性質,利用SAS證明△ABQ≌△CAP;
C、由△ABQ≌△CAP根據(jù)全等三角形的性質可得∠BAQ=∠ACP,從而得到∠CMQ=60°;
D、設時間為t秒,則AP=BQ=tcm,PB=(4-t)cm,當∠PQB=90°時,因為∠B=60°,所以PB=2BQ,即4-t=2t故可得出t的值,當∠BPQ=90°時,同理可得BQ=2BP,即t=2(4-t),由此兩種情況即可得出結論.
解:A、在等邊△ABC中,AB=BC.
∵點P、Q的速度都為1cm/s,
∴AP=BQ,
∴BP=CQ.
只有當CM=CQ時,BP=CM.
故A錯誤;
B、∵△ABC是等邊三角形
∴∠ABQ=∠CAP,AB=CA,
又∵點P、Q運動速度相同,
∴AP=BQ,
在△ABQ與△CAP中,
∵,
∴△ABQ≌△CAP(SAS).
故B正確;
C、點P、Q在運動的過程中,∠QMC不變.
理由:∵△ABQ≌△CAP,
∴∠BAQ=∠ACP,
∵∠QMC=∠ACP+∠MAC,
∴∠CMQ=∠BAQ+∠MAC=∠BAC=60°.
故C正確;
D、設時間為t秒,則AP=BQ=tcm,PB=(4-t)cm,
當∠PQB=90°時,
∵∠B=60°,
∴PB=2BQ,即4-t=2t,t=,
當∠BPQ=90°時,
∵∠B=60°,
∴BQ=2BP,得t=2(4-t),t=,
∴當?shù)?/span>秒或第秒時,△PBQ為直角三角形.
故D正確.故選:A.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠A=36°,BD、CE分別是∠ABC、∠BCD的平分線,則圖中的等腰三角形有( )
A.5個B.4個C.3個D.2個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知:E是∠AOB的平分線上一點,EC⊥OB,ED⊥OA,C、D是垂足,連接CD,且交OE于點F.
(1)求證:OE是CD的垂直平分線.
(2)若∠AOB=60,請你探究OE,EF之間有什么數(shù)量關系?并證明你的結論。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某品牌汽車公司銷售部為了制定下個月的銷售計劃,對 20 位銷售員本月的銷售量進行了 統(tǒng)計,繪制成如圖所示的統(tǒng)計圖,則這 20 位銷售人員本月銷售量的平均數(shù)、中位數(shù)、眾數(shù) 分別是(單位:輛)( )
A.18.4,16,16B.18.4,20,16
C.19, 16,16D.19, 20,16
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩人用如圖所示的兩個分格均勻的轉盤做游戲:分別轉動兩個轉盤,若轉盤停止后,指針指向一個數(shù)字(若指針恰好停在分格線上,則重轉一次),用所指的兩個數(shù)字作乘積,如果積大于10,那么甲獲勝;如果積不大于10,那么乙獲勝.清你解決下列問題:
(l)利用樹狀圖(或列表)的方法表示游戲所有可能出現(xiàn)的結果;
(2)求甲、乙兩人獲勝的概率,并說明游戲是否公平.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某數(shù)學興趣小組要測量一棟五層居民樓CD的高度,該樓底層為車庫,高2.5米;上面五層居住,每層高度相等,測角儀支架離地1.5米,在A處測得五樓頂部點D的仰角為60°,在B處測得四樓頂部點E的仰角為30°,AB=14米,求居民樓的高度.(精確到0.1米,參考數(shù)據(jù):≈1.73)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知點A(﹣4,0)、B(0,3),對△AOB連續(xù)作旋轉變換依次得到三角形(1)、(2)、(3)、(4)、…,則第(5)個三角形的直角頂點的坐標是_____,第(2018)個三角形的直角頂點的坐標是______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“一帶一路”的戰(zhàn)略構想為國內許多企業(yè)的發(fā)展帶來了新的機遇,某公司生產(chǎn)A,B兩種機械設備,每臺B種設備的成本是A種設備的倍,公司若投入16萬元生產(chǎn)A種設備,36萬元生產(chǎn)B種設備,則可生產(chǎn)兩種設備共10臺.請解答下列問題:
(1)A,B兩種設備每臺的成本分別是多少萬元?
(2)A,B兩種設備每臺的售價分別是6萬元,10萬元,該公司生產(chǎn)兩種設備各30臺,為更好的支持“一帶一路”的戰(zhàn)略構想,公司決定優(yōu)惠賣給“一帶一路”沿線的甲國,A種設備按原來售價8折出售,B種設備在原來售價的基礎上優(yōu)惠10%,若設備全部售出,該公司一共獲利多少萬元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com