如圖,已知一次函數(shù)y=-x+7與正比例函數(shù)y=x的圖象交于點A,且與x軸交于點B.
(1)求點A和點B的坐標;
(2)過點A作AC⊥y軸于點C,過點B作直線l∥y軸.動點P從點O出發(fā),以每秒1個單位長的速度,沿O-C-A的路線向點A運動;同時直線l從點B出發(fā),以相同速度向左平移,在平移過程中,直線l交x軸于點R,交線段BA或線段AO于點Q.當點P到達點A時,點P和直線l都停止運動.在運動過程中,設(shè)動點P運動的時間為t秒.
①當t為何值時,以A、P、R為頂點的三角形的面積為8?
②是否存在以A、P、Q為頂點的三角形是等腰三角形?若存在,求t的值;若不存在,請說明理由.

【答案】分析:(1)根據(jù)圖象與坐標軸交點求法直接得出即可,再利用直線交點坐標求法將兩直線解析式聯(lián)立即可得出交點坐標;
(2)①利用S梯形ACOB-S△ACP-S△POR-S△ARB=8,表示出各部分的邊長,整理出一元二次方程,求出即可;
②根據(jù)一次函數(shù)與坐標軸的交點得出,∠OBN=∠ONB=45°,進而利用勾股定理以及等腰三角形的性質(zhì)和直角三角形的判定求出即可.
解答:解:(1)∵一次函數(shù)y=-x+7與正比例函數(shù)y=x的圖象交于點A,且與x軸交于點B.
,
解得:,
∴A點坐標為:(3,4);
∵y=-x+7=0,
解得:x=7,
∴B點坐標為:(7,0).

(2)①當P在OC上運動時,0≤t<4時,PO=t,PC=4-t,BR=t,OR=7-t,
∵當以A、P、R為頂點的三角形的面積為8,
∴S梯形ACOB-S△ACP-S△POR-S△ARB=8,
(AC+BO)×CO-AC×CP-PO×RO-AM×BR=8,
∴(AC+BO)×CO-AC×CP-PO×RO-AM×BR=16,
∴(3+7)×4-3×(4-t)-t×(7-t)-4t=16,
∴t2-8t+12=0,
解得:t1=2,t2=6(舍去),
當4≤t<7時,S△APR=AP×OC=2(7-t)=8,解得t=3,不符合4≤t<7;
綜上所述,當t=2時,以A、P、R為頂點的三角形的面積為8;

②存在.延長CA到直線l于一點D,當l與AB相交于Q,
∵一次函數(shù)y=-x+7與x軸交于(7,0)點,與y軸交于(0,7)點,
∴NO=OB,
∴∠OBN=∠ONB=45°,
∵直線l∥y軸,
∴RQ=RB,CD⊥L,
當0≤t<4時,如圖1,
RB=OP=QR=t,DQ=AD=(4-t),AC=3,PC=4-t,
∵以A、P、Q為頂點的三角形是等腰三角形,則AP=AQ,
∴AC2+PC2=AP2=AQ2=2AD2,
∴9+(4-t)2=2(4-t)2,解得:t1=1,t2=7(舍去),
當AP=PQ時 32+(4-t)2=(7-t)2,
解得t=4 (舍去)
 當PQ=AQ時,2(4-t)2=(7-t)2,
解得t1=1+3(舍去),t2=1-3(舍去)
當4≤t<7時,如圖(備用圖),過A作AD⊥OB于D,則AD=BD=4,
設(shè)直線l交AC于E,則QE⊥AC,AE=RD=t-4,AP=7-t,
由cos∠OAC==,
得AQ=(t-4),
若AQ=AP,則(t-4)=7-t,解得t=,
當AQ=PQ時,AE=PE,即AE=AP,
得t-4=(7-t),
解得:t=5,
當AP=PQ時,過P作PF⊥AQ,于F,
AF=AQ=×(t-4),
在Rt△APF中,由cos∠PAF==
得AF=AP,
×(t-4)=(7-t),
解得:t=,
綜上所述,當t=1、5、、秒時,存在以A、P、Q為頂點的三角形是等腰三角形.
點評:此題主要考查了一次函數(shù)與坐標軸交點求法以及三角形面積求法和等腰直角三角形的性質(zhì)等知識,此題綜合性較強,利用函數(shù)圖象表示出各部分長度,再利用勾股定理求出是解決問題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知一次函數(shù)y1=kx+b的圖象與反比例函數(shù)y2=
ax
的圖象交于A(2,4)和精英家教網(wǎng)B(-4,m)兩點.
(1)求這兩個函數(shù)的解析式;
(2)求△AOB的面積;
(3)根據(jù)圖象直接寫出,當y1>y2時,x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=-
8x
的圖象交于A,B點,且點A的橫坐標和點B的縱坐標都是-2.求:
(1)求A、B兩點坐標;
(2)求一次函數(shù)的解析式;
(3)根據(jù)圖象直接寫出使一次函數(shù)的值小于反比例函數(shù)的值的x的取值范圍.
(4)求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•新疆)如圖,已知一次函數(shù)y1=kx+b與反比例函數(shù)y2=
mx
的圖象交于A(2,4)、B(-4,n)兩點.
(1)分別求出y1和y2的解析式;
(2)寫出y1=y2時,x的值;
(3)寫出y1>y2時,x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知一次函數(shù)y=k1x+b經(jīng)過A、B兩點,將點A向上平移1個單位后剛好在反比例函數(shù)y=
k2x
上.
(1)求出一次函數(shù)解析式.
(2)求出反比例函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知一次函數(shù)y=kx+b的圖象交反比例函數(shù)y=
4-2m
x
的圖象交于點A、B,交x軸于點C.
(1)求m的取值范圍;
(2)若點A的坐標是(2,-4),且
BC
AB
=
1
3
,求m的值和一次函數(shù)的解析式;
(3)根據(jù)圖象,寫出當反比例函數(shù)的值小于一次函數(shù)的值時x 的取值范圍?

查看答案和解析>>

同步練習冊答案