【題目】計(jì)算:(π﹣3.14)0+(﹣1)2015+|1﹣ |﹣3tan30°.

【答案】解:原式=1﹣1+ ﹣1﹣3× =1﹣1+ ﹣1﹣ =﹣1
【解析】原式第一項(xiàng)利用零指數(shù)冪法則計(jì)算,第二項(xiàng)利用乘方的意義化簡(jiǎn),第三項(xiàng)利用絕對(duì)值的代數(shù)意義化簡(jiǎn),最后一項(xiàng)利用特殊角的三角函數(shù)值計(jì)算即可得到結(jié)果.
【考點(diǎn)精析】本題主要考查了零指數(shù)冪法則和特殊角的三角函數(shù)值的相關(guān)知識(shí)點(diǎn),需要掌握零次冪和負(fù)整數(shù)指數(shù)冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數(shù));分母口訣:30度、45度、60度的正弦值、余弦值的分母都是2,30度、45度、60度的正切值、余切值的分母都是3,分子口訣:“123,321,三九二十七”才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,ABCD為正方形,直線MN分別過AD邊與BC邊的中點(diǎn),點(diǎn)P為直線MN上任意一點(diǎn),連接PB、PC分別與AD邊交于E、F兩點(diǎn),PC與BD交于點(diǎn)K,連接AK與PB交于點(diǎn)G.

(1)探索發(fā)現(xiàn)
當(dāng)點(diǎn)P落在AD邊上時(shí),如圖2,試探究PB與AK的位置關(guān)系以及PB、PK、AK三者的數(shù)量關(guān)系(直接寫出無需證明);
(2)延伸拓展
當(dāng)點(diǎn)P落在正方形外,如圖1,以上兩個(gè)結(jié)論是否仍然成立?如果成立請(qǐng)給出證明,如果不成立請(qǐng)說明你的理由;
(3)應(yīng)用推廣
如圖3,在等腰Rt△ABD中,其中∠BAD=90°,腰長(zhǎng)為3,M、N分別為AD邊與BD邊的中點(diǎn),K為線段DN中點(diǎn),F(xiàn)為AD邊上靠近于D的三等分點(diǎn).連接KF并延長(zhǎng)與直線MN交于點(diǎn)P,連接PB分別與AD、AK交于點(diǎn)E、G.試求四邊形EFKG的周長(zhǎng)及面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在平面直角坐標(biāo)系xOy中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(﹣2,4),B(﹣2,1),C(﹣5,2).

(1)畫出△ABC關(guān)于x軸對(duì)稱的△A1B1C1;
(2)將△A1B1C1的三個(gè)頂點(diǎn)的橫坐標(biāo)與縱坐同時(shí)乘以﹣2,得到對(duì)應(yīng)的點(diǎn)A2 , B2 , C2 , 請(qǐng)畫出△A2B2C2
(3)則SA1B1C1:SA2B2C2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),拋物線y=﹣ x2+x+c與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,其中點(diǎn)A的坐標(biāo)為(﹣2,0).

(1)求此拋物線的解析式;
(2)①若點(diǎn)D是第一象限內(nèi)拋物線上的一個(gè)動(dòng)點(diǎn),過點(diǎn)D作DE⊥x軸于E,連接CD,以O(shè)E為直徑作⊙M,如圖(2),試求當(dāng)CD與⊙M相切時(shí)D點(diǎn)的坐標(biāo);
②點(diǎn)F是x軸上的動(dòng)點(diǎn),在拋物線上是否存在一點(diǎn)G,使A、C、G、F四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?若存在,求出點(diǎn)G的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在下列敘述中:
①一組對(duì)邊相等的四邊形是平行四邊形;
②函數(shù)y= 中,y隨x的增大而減。
③有一組鄰邊相等的平行四邊形是菱形;
④有不可能事件A發(fā)生的概率為0.0001.
正確的敘述有( )
A.0個(gè)
B.1個(gè)
C.2個(gè)
D.3個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)E、F分別是BC、CD的中點(diǎn),DE交AF于點(diǎn)M,點(diǎn)N為DE的中點(diǎn).
(1)若AB=4,求△DNF的周長(zhǎng)及sin∠DAF的值;
(2)求證:2ADNF=DEDM.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ADABC的中線,E,F分別是ADAD延長(zhǎng)線上的點(diǎn),且DE=DF,連接BF、CE,且∠FBD=35°BDF=75°,下列說法:①BDFCDE;ABDACD面積相等;③BFCE④∠DEC=70°,其中正確的有( 。

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,⊙M過原點(diǎn)O,與x軸交于A(4,0),與y軸交于B(0,3),點(diǎn)C為劣弧AO的中點(diǎn),連接AC并延長(zhǎng)到D,使DC=4CA,連接BD.
(1)求⊙M的半徑;
(2)證明:BD為⊙M的切線;
(3)在直線MC上找一點(diǎn)P,使|DP﹣AP|最大.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知任意三角形的三邊長(zhǎng),如何求三角形面積?
古希臘的幾何學(xué)家海倫解決了這個(gè)問題,在他的著作《度量論》一書中給出了計(jì)算公式﹣﹣海倫公式S= (其中a,b,c是三角形的三邊長(zhǎng),p= ,S為三角形的面積),并給出了證明
例如:在△ABC中,a=3,b=4,c=5,那么它的面積可以這樣計(jì)算:
∵a=3,b=4,c=5
∴p= =6
∴S= = =6
事實(shí)上,對(duì)于已知三角形的三邊長(zhǎng)求三角形面積的問題,還可用我國(guó)南宋時(shí)期數(shù)學(xué)家秦九韶提出的秦九韶公式等方法解決.
如圖,在△ABC中,BC=5,AC=6,AB=9

(1)用海倫公式求△ABC的面積;
(2)求△ABC的內(nèi)切圓半徑r.

查看答案和解析>>

同步練習(xí)冊(cè)答案