【題目】已知任意三角形的三邊長,如何求三角形面積?
古希臘的幾何學(xué)家海倫解決了這個問題,在他的著作《度量論》一書中給出了計算公式﹣﹣海倫公式S= (其中a,b,c是三角形的三邊長,p= ,S為三角形的面積),并給出了證明
例如:在△ABC中,a=3,b=4,c=5,那么它的面積可以這樣計算:
∵a=3,b=4,c=5
∴p= =6
∴S= = =6
事實上,對于已知三角形的三邊長求三角形面積的問題,還可用我國南宋時期數(shù)學(xué)家秦九韶提出的秦九韶公式等方法解決.
如圖,在△ABC中,BC=5,AC=6,AB=9
(1)用海倫公式求△ABC的面積;
(2)求△ABC的內(nèi)切圓半徑r.
【答案】
(1)解:∵BC=5,AC=6,AB=9,
∴p= = =10,
∴S= = =10 ;
故△ABC的面積10 ;
(2)解:∵S= r(AC+BC+AB),
∴10 = r(5+6+9),
解得:r= ,
故△ABC的內(nèi)切圓半徑r= .
【解析】本題主要三角形的內(nèi)切圓與內(nèi)心、二次根式的應(yīng)用,熟練掌握三角形的面積與內(nèi)切圓半徑間的公式是解題的關(guān)鍵.(1)先根據(jù)BC、AC、AB的長求出P,再代入到公式S= 即可求得S的值;(2)根據(jù)公式S= r(AC+BC+AB),代入可得關(guān)于r的方程,解方程得r的值.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,AD⊥BC于點D,BC=10cm,AD=8cm.點P從點B出發(fā),在線段BC上以每秒3cm的速度向點C勻速運動,與此同時,垂直于AD的直線m從底邊BC出發(fā),以每秒2cm的速度沿DA方向勻速平移,分別交AB、AC、AD于E、F、H,當(dāng)點P到達(dá)點C時,點P與直線m同時停止運動,設(shè)運動時間為t秒(t>0).
(1)當(dāng)t=2時,連接DE、DF,求證:四邊形AEDF為菱形;
(2)在整個運動過程中,所形成的△PEF的面積存在最大值,當(dāng)△PEF的面積最大時,求線段BP的長;
(3)是否存在某一時刻t,使△PEF為直角三角形?若存在,請求出此時刻t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD繞點B逆時針旋轉(zhuǎn)30°后得到正方形BEFG,EF與AD相交于點H,延長DA交GF于點K.若正方形ABCD邊長為 ,則AK= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一根可伸縮的魚竿,魚竿是用10節(jié)大小不同的空心套管連接而成.閑置時魚竿可收縮,完全收縮后,魚竿長度即為第1節(jié)套管的長度(如圖1所示):使用時,可將魚竿的每一節(jié)套管都完全拉伸(如圖2所示).圖3是這跟魚竿所有套管都處于完全拉伸狀態(tài)下的平面示意圖.已知第1節(jié)套管長50cm,第2節(jié)套管長46cm,以此類推,每一節(jié)套管均比前一節(jié)套管少4cm.完全拉伸時,為了使相鄰兩節(jié)套管連接并固定,每相鄰兩節(jié)套管間均有相同長度的重疊,設(shè)其長度為xcm.
(1)請直接寫出第5節(jié)套管的長度;
(2)當(dāng)這根魚竿完全拉伸時,其長度為311cm,求x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個幾何體是由一些大小相同的小正方塊擺成的,三視圖如圖所示,則組成這幾何體的小正方塊有( 。
A.4個
B.5個
C.6個
D.7個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀光塔是濰坊市區(qū)的標(biāo)志性建筑,為測量其高度,如圖,一人先在附近一樓房的底端A點處觀測觀光塔頂端C處的仰角是60°,然后爬到該樓房頂端B點處觀測觀光塔底部D處的俯角是30° . 已知樓房高AB約是45m , 根據(jù)以上觀測數(shù)據(jù)可求觀光塔的高CD是m .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用木條制成如圖的形式,A、B、C三點釘上釘子,在D和D′處加上粉筆,當(dāng)用D′畫圖時,在D處的筆同時也畫出一個圖形.請問:這樣畫出的兩個圖形是相似圖形嗎?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com