如圖,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于點D,PE⊥OB于點E.如果點M是OP的中點,則DM的長是


  1. A.
    2
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式
C
分析:由OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,易得△OCP是等腰三角形,∠COP=30°,又由含30°角的直角三角形的性質(zhì),即可求得PE的值,繼而求得OP的長,然后由直角三角形斜邊上的中線等于斜邊的一半,即可求得DM的長.
解答:∵OP平分∠AOB,∠AOB=60°,
∴∠AOP=∠COP=30°,
∵CP∥OA,
∴∠AOP=∠CPO,
∴∠COP=∠CPO,
∴OC=CP=2,
∵∠PCE=∠AOB=60°,PE⊥OB,
∴∠CPE=30°,
∴CE=CP=1,
∴PE==,
∴OP=2PE=2,
∵PD⊥OA,點M是OP的中點,
∴DM=OP=
故選C.
點評:此題考查了等腰三角形的性質(zhì)與判定、含30°直角三角形的性質(zhì)以及直角三角形斜邊的中線的性質(zhì).此題難度適中,注意掌握數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•西寧)如圖,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于點D,PE⊥OB于點E.如果點M是OP的中點,則DM的長是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知OP平分∠MON,PA⊥ON于點A,點Q是射線OM上的一個動點.若PA=2,則PQ的最小值為
2
2
,理論根據(jù)為
角平分線上的點到角兩邊的距離相等
角平分線上的點到角兩邊的距離相等

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(青海西寧卷)數(shù)學(xué)(解析版) 題型:選擇題

如圖,已知OP平分∠AOB,∠AOB=,CP,CP∥OA,PD⊥OA于點D,PE⊥OB于點E.如果點M是OP的中點,則DM的長是

A.                  B.         C.         D.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

如圖,已知OP平分∠MON,PA⊥ON于點A,點Q是射線OM上的一個動點.若PA=2,則PQ的最小值為________,理論根據(jù)為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知OP平分∠MON,PA⊥ON于點A,點Q是射線OM上的一個動點.若PA=2,則PQ的最小值為______,理論根據(jù)為______.
精英家教網(wǎng)

查看答案和解析>>

同步練習(xí)冊答案