【題目】閱讀下面材料:
小明遇到這樣一個問題:如圖1,在△ABC中,DE∥BC分別交AB于D,交AC于E. 已知CD⊥BE,CD=3,BE=5,求BC+DE的值.
小明發(fā)現(xiàn),過點E作EF∥DC,交BC延長線于點F,構造△BEF,經(jīng)過推理和計算能夠使問題得到解決(如圖2).
(1)求證:DE=CF
(2)求BC+DE的值
(3)參考小明思考問題的方法,解決問題:
如圖3,已知ABCD和矩形ABEF,AC與DF交于點G,AC=BF=DF,求∠AGF的度數(shù).
【答案】(1)詳見解析;(2);(3)60°
【解析】
(1)由DE∥BC,EF∥DC,可證得四邊形DCFE是平行四邊形,從而問題得以解決;
(2)由DC⊥BE,四邊形DCFE是平行四邊形,可得Rt△BEF,求出BF的長,證明BC+DE=BF;
(3)連接AE,CE,由四邊形ABCD是平行四邊形,四邊形ABEF是矩形,易證得四邊形DCEF是平行四邊形,繼而證得△ACE是等邊三角形,問題得證.
(1)∵DE∥BC,EF∥DC,
∴四邊形DCFE是平行四邊形,
∴EF=CD=3,CF=DE,
(2)由于四邊形DCFE是平行四邊形,
∴DE=CF,DC=EF,
∴BC+DE=BC+CF=BF.
∵DC⊥BE,DC∥EF,
∴∠BEF=90°.在Rt△BEF中,
∵BE=5,CD=3,
∴BC+DE=BC+CF=BF=;
(3)解決問題:連接AE,CE,如圖.
∵四邊形ABCD是平行四邊形,
∴AB∥DC.
∵四邊形ABEF是矩形,
∴AB∥FE,BF=AE.
∴DC∥FE.
∴四邊形DCEF是平行四邊形.
∴CE∥DF.
∵AC=BF=DF,
∴AC=AE=CE.
∴△ACE是等邊三角形.
∴∠ACE=60°.
∵CE∥DF,
∴∠AGF=∠ACE=60°.
科目:初中數(shù)學 來源: 題型:
【題目】某校在經(jīng)典朗讀活動中,對全校學生用A、B、C、D四個等級進行評價,現(xiàn)從中抽取若干名學生進行調(diào)查,繪制出兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中的信息解答下列問題:
(1)被調(diào)查的學生共有 人,圖2中A等級所占的圓心角為_ 度。
(2)補全折線統(tǒng)計圖。
(3)若該校共有學生1500人,請你估計全校評價B等級學生的人數(shù)。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖(1)是某河上一座古拱橋的截面圖,拱橋橋洞上沿是拋物線形狀,拋物線兩端點與水面的距離都是1m,拱橋的跨度為10m,橋洞與水面的最大距離是5m,橋洞兩側(cè)壁上各有一盞距離水面4m的景觀燈.現(xiàn)把拱橋的截面圖放在平面直角坐標系中,如圖(2).
求(1)拋物線的解析式;
(2)兩盞景觀燈P1、P2之間的水平距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AD平分∠CAB,交CB于點D,過點D作DE⊥AB,于點E
(1)求證:△ACD≌△AED;
(2)若∠B=30°,CD=1,求BD的長。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】出租車司機小王某天下午營運是在東西走向的大街上進行的,如果規(guī)定向東為正,向西為負,他這天下午行車里程(單位:千米)如下:
+15,-2,+5,-1,+10,-3,-2,+12,+4,-5,+6.
(1)將最后一名乘客送到目的地時,小王距下午出車時的出發(fā)點多遠?
(2)若汽車耗油量為0.05升/千米,這天下午小王的汽車共耗油多少升?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,F是CD上一點,E是BF上一點,連接AE、AC、DE.若AB=AC,AD=AE,∠BAC=∠DAE=70°,AE平分∠BAC,則下列結論中:①△ABE≌△ACD:②BE=EF;③∠BFD=110°;④AC垂直平分DE,正確的個數(shù)有( 。
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC是等邊三角形,BC=2.點P從點A出發(fā)沿沿射線AB以1的速度運動,過點P作PE∥BC交射線AC于點E,同時點Q從點C出發(fā)沿BC的延長線以1的速度運動,連結BE、EQ.設點P的運動時間為t().
(1)求證:△APE是等邊三角形;
(2)直接寫出CE的長(用含的代數(shù)式表示);
(3)當點P在邊AB上,且不與點A、B重合時,求證:△BPE≌△ECQ.
(4)在不添加字母和連結其它線段的條件下,當圖中等腰三角形的個數(shù)大于3時,直接寫出t的值和對應的等腰三角形的個數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場銷售A,B兩種品牌的教學設備,這兩種教學設備的進價和售價如下表所示:
A | B | |
進價(萬元/套) | 1.5 | 1.2 |
售價(萬元/套) | 1.65 | 1.4 |
該商場計劃購進兩種教學設備若干套,共需66萬元,全部銷售后可獲毛利潤9萬元。
(毛利潤=(售價 - 進價)×銷售量)
(1)該商場計劃購進A,B兩種品牌的教學設備各多少套?
(2)通過市場調(diào)研,該商場決定在原計劃的基礎上,減少A種設備的購進數(shù)量,增加B種設備的購進數(shù)量,已知B種設備增加的數(shù)量是A種設備減少數(shù)量的1.5倍。若用于購進這兩種教學設備的總資金不超過69萬元,問A種設備購進數(shù)量至多減少多少套?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com