【題目】已知∠AOB,作圖.

步驟1:在OB上任取一點M,以點M為圓心,MO長為半徑畫半圓,分別交OA、OB于點P、Q

步驟2:過點MPQ的垂線交弧PQ 于點C;

步驟3:畫射線OC

則下列判斷:①弧CQ=弧PC;②MCOA;③OP=PQ;④OC平分∠AOB,

其中正確的為_______________(填序號)

【答案】

【解析】解:∵OQ為直徑,∴∠OPQ=90°,OAPQ

MCPQ,OAMC,結(jié)論正確;

①∵OAMC∴∠AOC=∠OCMOM=MC,∴∠OCM=∠MOC∴∠AOC=∠COM,

OC平分AOB,結(jié)論①④正確;

∵∠AOB的度數(shù)未知,POQPQO互余,∴∠POQ不一定等于PQO,OP不一定等于PQ,結(jié)論錯誤.

綜上所述:正確的結(jié)論有①②④.故答案為:①②④

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】黨的十六大提出全面建設小康社會,加快推進社會主義現(xiàn)代化,力爭國民生產(chǎn)總值到2020年比2000年翻兩番(翻一番表示為原來的2倍)在本世紀的頭二十年(2001~2020年),要實現(xiàn)這一目標,以十年為單位計算,設每個十年的國民生產(chǎn)總值的增長率都是,那么滿足的方程為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若關于x的一元二次方程kx2-4x+2=0有實數(shù)根.

1)求k的取值范圍;

2)若ABC中,AB=AC=2,AB、BC的長是方程kx2-4x+2=0的兩根,求BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,P為正方形ABCD的邊BC上一動點(PB、C不重合),連接AP,過點BBQAPCD于點Q,將△BQC沿BQ所在的直線對折得到△BQC′,延長QC′BA的延長線于點M

(1)試探究APBQ的數(shù)量關系,并證明你的結(jié)論;

(2)AB=3BP=2PC,求QM的長;

(3)BP=m,PC=n時,求AM的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,拋物線y=x2+bx+cx軸交于A(-1,0)、B兩點(AB左),y軸交于點C0-3).

1)求拋物線的解析式;

2)若點D是線段BC下方拋物線上的動點,求四邊形ABCD面積的最大值;

3)若點Ex軸上,點P在拋物線上.是否存在以B、CE、P為頂點且以BC為一邊的平行四邊形?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一輛快車從甲地開往乙地,一輛慢車從乙地開往甲地,兩車同時出發(fā),設慢車離乙地的距離為y1km),快車離乙地的距離為y2km),慢車的行駛時間為xh),兩車之間的距離為skm),y1,y2x的函數(shù)關系圖象如圖1所示,sx的函數(shù)關系圖象如圖2所示.

(1)圖中的a   b   

(2)從甲地到乙地依次有E,F兩個加油站,相距200km,若慢車經(jīng)過E加油站時,快車恰好經(jīng)過F加油站,求F加油站到甲地的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】根據(jù)下表回答問題:

x

16

16.1

16.2

16.3

16.4

16.5

16.6

16.7

16.8

x2

256

259.21

262.44

265.69

268.96

272.25

175.56

278.89

282.24

(1)272.25的平方根是      

(2) =      , =      , =      

(3)設 的整數(shù)部分為a,求﹣4a的立方根.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一元二次方程中,若系數(shù)可在01,23中取值,則其中有實數(shù)解的方程的個數(shù)是___ 個,寫出其中有兩個相等實數(shù)根的一元二次方程_________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,拋物線y= x2+bx+c與x軸、y軸分別相交于點A 1,0)、B(0,3)兩點,其頂點為D

(1)求這條拋物線的解析式;

(2)若拋物線與x軸的另一個交點為E. 求△ODE的面積;拋物線的對稱軸上是否存在點P使得△PAB的周長最短。若存在請求出P點的坐標,若不存在說明理由。

查看答案和解析>>

同步練習冊答案