【題目】平面直角坐標系中,橫坐標為a的點 A在反比例函數(shù)的圖象上,點與點關于點對稱,一次函數(shù)的圖象經(jīng)過點
(1)設,點(4,2)在函數(shù) , 的圖像上.
①分別求函數(shù) ,的表達式;
②直接寫出使 成立的的范圍;
(2)如圖①,設函數(shù) ,的圖像相交于點,點的橫坐標為,△的面積為16,求 的值;
(3)設,如圖②,過點作 軸,與函數(shù)的圖像相交于點,以為一邊向右側作正方形,試說明函數(shù)的圖像與線段的交點一定在函數(shù)的圖像上.
【答案】(1)①;②2<x<4;(2)k=6;(3)見解析.
【解析】
(1)由已知代入點坐標即可;
(2)面積問題可以轉化為△AOB面積,用a、k表示面積問題可解;
(3)設出點A、A′坐標,依次表示AD、AF及點P坐標.
(1)解:∵點B(4,2) 在函數(shù) , 的圖像上.∴k=4×2=8∴
∵點A在 上∴x=a=2,y=4∴點A(2,4)
∵A和點A'關于原點對稱
∴點A'的坐標為(-2,-4)
∵一次函數(shù)y2=mx+n的圖像經(jīng)過點A'和點B
解得: ∴y2=x-2;
②由圖像可知,當 時,y1=圖象在y2=x-2圖象上方,且兩函數(shù)圖象在x軸上方,
∴由圖象得: 2<x<4;
(2)解:)分別過點A、B作AC⊥x軸于點C,BD⊥x軸于點D,連BO
∵O為AA′中點
S△AOB=S△ABA′=8
∵點A、B在雙曲線上
∴S△AOC=S△BOD
∴S△AOB=S四邊形ACDB=8
由已知點A、B坐標都表示為(a,)(3a,)
∴×(+)×2a=8
解得k=6;
(3)解:設A(a , ),則A′(﹣a ,﹣),代入得 ,
∴ ,
∴D(a,)
∴AD= ,
∵AD=AF,
∴ ,代入得 ,即P(,)
將點P橫坐標代入 得縱坐標為,可見點P一定在函數(shù)的圖像上.
故答案為(1)①;②2<x<4;(2)k=6;(3)見解析.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC,以AC為底邊作等腰△ACD,且使∠ABC=2∠CAD,連接BD.
(1)如圖1,若∠ADC=90°,∠BAC=30°,BC=1,求CD的長;
(2)如圖1,若∠ADC=90°,證明:AB+BC=BD;
(3)如圖2,若∠ADC=60°,探究AB,BC,BD之間的數(shù)量關系并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,BD是矩形ABCD的一條對角線.
(1)作BD的垂直平分線EF,分別交AD,BC于點E,F,垂足為點O;(要求用尺規(guī)作圖,保留作圖痕跡,不要求寫作法)
(2)在(1)中,連接BE和DF,求證:四邊形DEBF是菱形
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某水果公司購進10 000kg蘋果,公司想知道蘋果的損壞率,從所有蘋果中隨機抽取若干進行統(tǒng)計,部分結果如下表:
蘋果總質量n(kg) | 100 | 200 | 300 | 400 | 500 | 1000 |
損壞蘋果質量m(kg) | 10.50 | 19.42 | 30.63 | 39.24 | 49.54 | 101.10 |
蘋果損壞的頻率 (結果保留小數(shù)點后三位) | 0.105 | 0.097 | 0.102 | 0.098 | 0.099 | 0.101 |
估計這批蘋果損壞的概率為_____(結果保留小數(shù)點后一位),損壞的蘋果約有______kg.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點A、B、C是數(shù)軸上三點,O為原點.點C對應的數(shù)為6,BC=4,AB=12.
(1)求點A、B對應的數(shù);
(2)動點P、Q分別同時從A、C出發(fā),分別以每秒6個單位和3個單位的速度沿數(shù)軸正方向運動.M為AP的中點,N在CQ上,且CN=CQ,設運動時間為t(t>0).
①求點M、N對應的數(shù)(用含t的式子表示); ②t為何值時,OM=2BN.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在函數(shù)y=(x>0)的圖象上有點P1、P2、P3…、Pn、Pn+1,點P1的橫坐標為2,且后面每個點的橫坐標與它前面相鄰點的橫坐標的差都是2,過點P1、P2、P3…、Pn、Pn+1分別作x軸、y軸的垂線段,構成若干個矩形,如圖所示,將圖中陰影部分的面積從左至右依次記為S1、S2、S3…、Sn,則Sn=______.(用含n的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】恰逢“植樹節(jié)”,師梅與博小兩所學校決定購進A,B兩種樹苗進行種植,已知兩所學校共花費了390元購進了50棵樹苗,其中A樹苗10元一棵,B樹苗5元一棵.現(xiàn)在要將50棵樹苗運往兩所學校,其運費如下表所示:
樹苗類型 | 師梅(元/棵) | 博小(元/棵) |
A | 8 | 10 |
B | 6 | 5 |
(1)求這50棵樹苗中A、B樹苗各多少棵?
(2)現(xiàn)師梅需要30棵樹苗,博小需要20棵樹苗,設師梅需要A樹苗為x棵,運往師梅和博小的總運費為y,求y與x的函數(shù)解析式.
(3)在(2)的條件下,若運往師梅的運費不超過200元,請你寫出使總運費最少的樹苗分配方案,并求出最少費用.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法正確的是( )
A. 擲一枚均勻的骰子,骰子停止轉動后,6點朝上是必然事件
B. 甲、乙兩人在相同條件下各射擊10次,他們的成績平均數(shù)相同,方差分別是S甲2=0.4,S乙2=0.6,則甲的射擊成績較穩(wěn)定
C. “明天降雨的概率為”,表示明天有半天都在降雨
D. 了解一批電視機的使用壽命,適合用普查的方式
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知雅美服裝廠現(xiàn)有A種布料70米,B種布料52米,現(xiàn)計劃用這兩種布料生產(chǎn)M、N兩種型號的時裝共80套.已知做一套M型號的時裝需用A種布料1.1米,B種布料0.4米,可獲利50元;做一套N型號的時裝需用A種布料0.6米,B種布料0.9米,可獲利45元.設生產(chǎn)M型號的時裝套數(shù)為x,用這批布料生產(chǎn)兩種型號的時裝所獲得的總利潤為y元.
(1)求y(元)與x(套)的函數(shù)關系式,并求出自變量的取值范圍;
(2)當M型號的時裝為多少套時,能使該廠所獲利潤最大?最大利潤是多?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com