【題目】如圖,已知等邊△ABC,以AB為直徑的圓與BC邊交于點(diǎn)D,過點(diǎn)D作DF⊥AC,垂足為F.
(1)求證:DF是⊙O的切線;
(2)過點(diǎn)F作FG⊥AB,垂足為G,若AB=12.
①求FG的長;
②求點(diǎn)D到FG的距離.
【答案】(1)證明見解析;(2);(3).
【解析】
(1)連接OD,證∠ODF=90°即可.
(2)利用△CDF是30°的直角三角形可求得CF長,同理可利用△FGA中的60°的三角函數(shù)值可求得FG長.
(3)過D作DH⊥AB于H.利用△BDH是30°的直角三角形可求得BH長,同理可求得AG,然后根據(jù)GH=AB-AG-BH求得即可
解:(1)連接OD,∵OB=OD,∠OBD=60°,
∴△OBD為等邊三角形,
∴∠ODB=∠C=60°,
∴OD∥AC,
又∵DF⊥AC,∴DF⊥OD,
∴DF是⊙O的切線;
(2)由(1)得:OD∥AC,∵O為AB的中點(diǎn),
∴OD是△ABC的中位線,
∴CD=BD=AB=6,
∴DF=CD·sin60°=,
CF=CD·cos60°=3,
∴AF=AC-CF=9,
∴FG=AF·sin60°=;
(3)如圖2,過D作DH⊥AB于H.
∵FG⊥AB,DH⊥AB,
∴FG∥DH,
在Rt△BDH中,∠B=60°,
∴∠BDH=30°,
∴BH=BD=3,DH=BH=3.
在Rt△AFG中,∵∠AFG=30°,
∴AG=AF=,
∵GH=AB-AG-BH=12--3=,
FG⊥AB,∴點(diǎn)D到FG的距離是.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市教育主管部門為了解學(xué)生的作業(yè)量情況,隨機(jī)抽取了幾所中學(xué)八年級的部分學(xué)生進(jìn)行了一次調(diào)查,并根據(jù)收集到的信息進(jìn)行了統(tǒng)計(jì),繪制了下面兩幅尚不完整的統(tǒng)計(jì)圖.請你根據(jù)統(tǒng)計(jì)圖、表中所提供的信息解答下列問題:
(1)本次共抽取了 名學(xué)生進(jìn)行調(diào)查;
(2)x= ,y= ,補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若這幾所中學(xué)八年級的學(xué)生共有3200人,請估計(jì)做作業(yè)時(shí)間在2小時(shí)以上的學(xué)生人數(shù)是多少?
(4)由圖表可知,這次被調(diào)查的八年級學(xué)生的作業(yè)時(shí)間的中位數(shù)一定落在1.5小時(shí)﹣2小時(shí)這一時(shí)段內(nèi),你認(rèn)為這種判斷正確嗎?(不需要說明理由)
寫作業(yè)時(shí)間 | 頻數(shù) | 頻率 |
1小時(shí)以內(nèi) | 12 | 0.1 |
1﹣1.5 | x | 0.15 |
1.5﹣2 | 30 | 0.25 |
2小時(shí)以上 | 60 | y |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】疫情期間,甲、乙兩個(gè)口罩工廠共同承擔(dān)口罩生產(chǎn)任務(wù),甲工廠單獨(dú)完成此項(xiàng)任務(wù)比乙工廠單獨(dú)完成此項(xiàng)任務(wù)需多用10天,且甲工廠單獨(dú)生產(chǎn)45天和乙工廠單獨(dú)生產(chǎn)30天的工作量相同.
(1)甲、乙兩工廠單獨(dú)完成此項(xiàng)任務(wù)需要多少天?
(2)若甲、乙兩工廠共同生產(chǎn)了3天后,乙工廠因設(shè)備檢修停止生產(chǎn),由甲工廠維續(xù)生產(chǎn),為了不影響任務(wù)進(jìn)度,甲工廠的工作效率提高到原來的2倍,要使甲工廠總的工作量不少于乙工廠總的工作量的2倍,那么甲工廠需要至少再單獨(dú)生產(chǎn)多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)C處有一個(gè)高空探測氣球,從點(diǎn)C處測得水平地面上A,B兩點(diǎn)的俯角分別為30°和45°.若AB=2km,則A,C兩點(diǎn)之間的距離為_____km.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=120°,線段AC的垂直平分線交BC于點(diǎn)F,交AC于點(diǎn)E,交BA的延長線于點(diǎn)D.若DE=3,則BF=( ).
A.4B.3C.2D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在某個(gè)世界讀書日前夕,我市某中學(xué)為了解本校學(xué)生的每周課外閱讀時(shí)間(用t表示,單位:小時(shí)),采用隨機(jī)抽樣的方法進(jìn)行問卷調(diào)查,調(diào)查結(jié)果按,,,分為四個(gè)等級,并依次用A,B,C,D表示,根據(jù)調(diào)查結(jié)果統(tǒng)計(jì)的數(shù)據(jù),繪制成了如下圖所示的兩幅不完整的統(tǒng)計(jì)圖,由圖中給出的信息解答下列問題:
(1)求本次調(diào)查的學(xué)生人數(shù);
(2)求扇形統(tǒng)計(jì)圖中等級B所在扇形的圓心角度數(shù),并把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)若該校共有學(xué)生1200人,試估計(jì)每周課外閱讀時(shí)間不少于3小時(shí)的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場用36萬元購進(jìn)A、B兩種商品,銷售完后共獲利6萬元,其進(jìn)價(jià)和售價(jià)如下表:
A | B | |
進(jìn)價(jià)(元/件) | 1200 | 1000 |
售價(jià)(元/件) | 1380 | 1200 |
(注:獲利=售價(jià)-進(jìn)價(jià))
(1) 該商場購進(jìn)A、B兩種商品各多少件?
(2) 商場第二次以原進(jìn)價(jià)購進(jìn)A、B兩種商品.購進(jìn)B種商品的件數(shù)不變,而購進(jìn)A種商品的件數(shù)是第一次的2倍,A種商品按原價(jià)出售,而B種商品打折銷售.若兩種商品銷售完畢,要使第二次經(jīng)營活動獲利不少于81600元,B種商品最低售價(jià)為每件多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AC、BC是⊙O的弦,∠ACB的平分線交⊙O于D,連接AD、BD,已知AB=6,BC=2.
(1)求AD的長度和四邊形ACBD的面積;
(2)證明:2AD2=AC2+BC2.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com