【題目】閱讀下面材料:

如圖1,在平面直角坐標系xOy中,直線y1=ax+b與雙曲線y2= 交于A(1,3)和B(﹣3,﹣1)兩點.

觀察圖象可知:

①當x=﹣3或1時,y1=y2

②當﹣3<x<0或x>1時,y1>y2,即通過觀察函數(shù)的圖象,可以得到不等式ax+b>的解集.

有這樣一個問題:求不等式x3+4x2﹣x﹣4>0的解集.

某同學(xué)根據(jù)學(xué)習(xí)以上知識的經(jīng)驗,對求不等式x3+4x2﹣x﹣4>0的解集進行了探究.

下面是他的探究過程,請將(2)、(3)、(4)補充完整:

(1)將不等式按條件進行轉(zhuǎn)化:

當x=0時,原不等式不成立;

當x>0時,原不等式可以轉(zhuǎn)化為x2+4x﹣1>

當x<0時,原不等式可以轉(zhuǎn)化為x2+4x﹣1<;

(2)構(gòu)造函數(shù),畫出圖象

設(shè)y3=x2+4x﹣1,y4=,在同一坐標系中分別畫出這兩個函數(shù)的圖象.

雙曲線y4=如圖2所示,請在此坐標系中畫出拋物線y3=x2+4x﹣1;(不用列表)

(3)確定兩個函數(shù)圖象公共點的橫坐標

觀察所畫兩個函數(shù)的圖象,猜想并通過代入函數(shù)解析式驗證可知:滿足y3=y4的所有x的值為   ;

(4)借助圖象,寫出解集

結(jié)合(1)的討論結(jié)果,觀察兩個函數(shù)的圖象可知:不等式x3+4x2﹣x﹣4>0的解集為   

【答案】2)圖見試題解析;(3±1﹣4;(4x1﹣4x﹣1

【解析】試題分析:(2)首先確定二次函數(shù)的對稱軸,然后確定兩個點即可作出二次函數(shù)的圖象;

3)根據(jù)圖象即可直接求解;

4)根據(jù)已知不等式x3+4x2﹣x﹣40即當x0時,x2+4x﹣1,;當x0時,x2+4x﹣1,根據(jù)圖象即可直接寫出答案.

試題解析:(2

;

3)兩個函數(shù)圖象公共點的橫坐標是±1﹣4

則滿足y3=y4的所有x的值為±1﹣4

故答案是:±1﹣4

4)不等式x3+4x2﹣x﹣40即當x0時,x2+4x﹣1,此時x的范圍是:x1;

x0時,x2+4x﹣1,則﹣4x﹣1

故答案是:x1﹣4x﹣1

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某電器超市銷售每臺進價分別為200元、170元的AB兩種型號的電風(fēng)扇,下表是近兩周的銷售情況:

(進價、售價均保持不變,利潤 = 銷售收入-進貨成本)

1)求AB兩種型號的電風(fēng)扇的銷售單價;

2)若超市準備用不多于5400元的金額再采購這兩種型號的電風(fēng)扇共30臺,求A種型號的電風(fēng)扇最多能采購多少臺?

3)在(2)的條件下,超市銷售完這30臺電風(fēng)扇能否實現(xiàn)利潤為1400元的目標?若能,請給出相應(yīng)的采購方案;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一段拋物線:y=﹣xx﹣2)(0≤x2)記為C1,它與x軸交于兩點O,A1;將C1A1旋轉(zhuǎn)180°得到C2,交x軸于A2;將C2A2旋轉(zhuǎn)180°得到C3,交x軸于A3;…如此進行下去,得到Cn,若點P(2017,m)在拋物線Cn上,則m( )

A. 1 B. ﹣1 C. 2 D. ﹣2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ABC=90°,D是邊AC上的一點,連接BD,使∠A=2∠1,EBC上的一點,以BE為直徑的⊙O經(jīng)過點D

1)求證:AC⊙O的切線;

2)若∠A=60°,⊙O的半徑為2,求陰影部分的面積.(結(jié)果保留根號和π

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖(1),在ABC中,∠A=62°,∠ABD=20°,∠ACD=35°,求∠BDC的度數(shù).

2)圖(1)所示的圖形中,有點像我們常見的學(xué)習(xí)用品--圓規(guī).我們不妨把這樣圖形叫做規(guī)形圖,觀察規(guī)形圖圖(2),試探究∠BDC與∠A、∠B、∠C之間的數(shù)量關(guān)系,并說明理由.

3)請你直接利用以上結(jié)論,解決以下問題:

①如圖(3),把一塊三角尺XYZ放置在ABC上,使三角尺的兩條直角邊XY、XZ恰好經(jīng)過點B、C,若∠A=42°,則∠ABX+ACX= °

②如圖(4),DC平分∠ADBEC平分∠AEB,若∠DAE=60°,∠DBE=140°,求∠DCE的度數(shù).

③如圖(5),∠ABD,∠ACD10等分線相交于點G1、G2、G9,若∠BDC=140°,∠BG1C=68°,求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A的坐標為(3,2),點B的坐標為(30).作如下操作:

1以點A為旋轉(zhuǎn)中心,將ABO順時針方向旋轉(zhuǎn)90°,得到AB1O1;

2以點O為位似中心,將ABO放大,得到A2B2O,使位似比為12,且點A2在第三象限.

①在圖中畫出AB1O1A2B2O

②請直接寫出點A2的坐標:  

③如果ABO內(nèi)部一點M的坐標為(mn),寫出點MA2B2O內(nèi)的對應(yīng)點N的坐標:  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,矩形ABCD中,AB,AD4,在BC邊上取點E,使BEAB,將△ABE向左平移到△DCF的位置,得到四邊形AEFD

1)求證:四邊形AEFD是菱形;

2)如圖2,將△DCF繞點D旋轉(zhuǎn)至△DGA,連接GE,求線段GE的長;

3)如圖3,設(shè)P、Q分別是EFAE上的兩點,且PDQ=67.5°,試探究線段PFAQ、PQ之間的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在ABCDCE中,∠ACB=DCE=90°,AC=DCBC=EC,ABDE相交于點F

1)如圖1,求證AB=DE

2)如圖2,連接CF,求證∠AFC=EFC;

3)如圖3,在(2)的條件下,當AF=EF時,連接BD,AE,延長CFBD于點G,AECF于點H,若AE=8BG=2,求線段GH的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,對角線ACBD相交于點O,點EBC上的一個動點,連接DE, AC于點F.

(1)如圖①,當時,求的值;

(2)如圖②當DE平分∠CDB時,求證:AF=OA;

(3)如圖③,當點EBC的中點時,過點FFGBC于點G,求證:CG=BG.

查看答案和解析>>

同步練習(xí)冊答案