設(shè)A(-2,y1),B(1,y2),C(2,y3)是拋物線y=-(x+1)2+a上的三點(diǎn),則y1、y2、y3的大小關(guān)系為()
A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y3>y1>y2
A

試題分析:由題意拋物線開(kāi)口向下,則距離拋物線的對(duì)稱(chēng)軸距離越遠(yuǎn)的點(diǎn)的縱坐標(biāo)越小.
∵拋物線y=-(x+1)2+a的開(kāi)口向下,對(duì)稱(chēng)軸為x=-1
,,
∴y1>y2>y3
故選A.
點(diǎn)評(píng):二次函數(shù)的性質(zhì)是初中數(shù)學(xué)的重點(diǎn),是中考必考題,一般難度不大,需熟練掌握.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某校八年級(jí)學(xué)生小麗、小強(qiáng)和小紅到某超市參加了社會(huì)實(shí)踐活動(dòng),在活動(dòng)中他們參與了某種水果的銷(xiāo)售工作.已知該水果的進(jìn)價(jià)為8元/千克,下面是他們?cè)诨顒?dòng)結(jié)束后的對(duì)話.
小麗:如果以10元/千克的價(jià)格銷(xiāo)售,那么每天可售出300千克.
小強(qiáng):如果每千克的利潤(rùn)為3元,那么每天可售出250千克.
小紅:如果以13元/千克的價(jià)格銷(xiāo)售,那么每天可獲取利潤(rùn)750元.
【利潤(rùn)=(銷(xiāo)售價(jià)-進(jìn)價(jià))銷(xiāo)售量】
(1)請(qǐng)根據(jù)他們的對(duì)話填寫(xiě)下表:
銷(xiāo)售單價(jià)x(元/kg)
10
11
13
銷(xiāo)售量y(kg)
 
 
 
(2)請(qǐng)你根據(jù)表格中的信息判斷每天的銷(xiāo)售量y(千克)與銷(xiāo)售單價(jià)x(元)之間存在怎樣的函數(shù)關(guān)系.并求y(千克)與x(元)(x>0)的函數(shù)關(guān)系式;
(3)設(shè)該超市銷(xiāo)售這種水果每天獲取的利潤(rùn)為W元,求W與x的函數(shù)關(guān)系式.當(dāng)銷(xiāo)售單價(jià)為何值時(shí),每天可獲得的利潤(rùn)最大?最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線軸的交點(diǎn)為A、B,與 軸的交點(diǎn)為C,頂點(diǎn)為,將拋物線繞點(diǎn)B旋轉(zhuǎn),得到新的拋物線,它的頂點(diǎn)為D.

(1)求拋物線的解析式;
(2)設(shè)拋物線軸的另一個(gè)交點(diǎn)為E,點(diǎn)P是線段ED上一個(gè)動(dòng)點(diǎn)(P不與E、D重合),過(guò)點(diǎn)P作y軸的垂線,垂足為F,連接EF.如果P點(diǎn)的坐標(biāo)為,△PEF的面積為S,求S與的函數(shù)關(guān)系式,寫(xiě)出自變量的取值范圍;
(3)設(shè)拋物線的對(duì)稱(chēng)軸與軸的交點(diǎn)為G,以G為圓心,A、B兩點(diǎn)間的距離為直徑作⊙G,試判斷直線CM與⊙G的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知在△ABC中,∠A = 90°,,經(jīng)過(guò)這個(gè)三角形重心的直線DE // BC,分別交邊AB、AC于點(diǎn)D和點(diǎn)E,P是線段DE上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P分別作PMBC,PFAB,PGAC,垂足分別為點(diǎn)M、F、G.設(shè)BM = x,四邊形AFPG的面積為y

(1)求PM的長(zhǎng);
(2)求y關(guān)于x的函數(shù)解析式,并寫(xiě)出它的定義域;
(3)聯(lián)結(jié)MF、MG,當(dāng)△PMF與△PMG相似時(shí),求BM的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某水渠的橫截面呈拋物線形,水面的寬為AB(單位:米),F(xiàn)以AB所在直線為x軸.以拋物線的對(duì)稱(chēng)軸為y軸建立如圖所示的平面直角坐標(biāo)系,設(shè)坐標(biāo)原點(diǎn)為O.已知AB=8米。設(shè)拋物線解析式為

(1)求a的值;
(2)點(diǎn)C(一1,m)是拋物線上一點(diǎn),點(diǎn)C關(guān)于原點(diǎn)D的對(duì)稱(chēng)點(diǎn)為點(diǎn)D,連接CD、BC、BD,求△BCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,兩條拋物線y1=-x2+1、y2=-x2-1 與分別經(jīng)過(guò)點(diǎn)(-2,0),(2,0)且平行于y軸的兩條平行線圍成的陰影部分的面積為   (  )
A.8B.6C.10D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在直角坐標(biāo)平面上,橫坐標(biāo)與縱坐標(biāo)都是整數(shù)的點(diǎn)稱(chēng)為整點(diǎn).如果將二次函數(shù)
軸所圍成的封閉圖形染成紅色,則在此紅色內(nèi)部區(qū)域及其邊界上的
整點(diǎn)個(gè)數(shù)是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

拋物線y=2(x+1)2-5的頂點(diǎn)坐標(biāo)是               .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖所示,已知正方形ABCD的邊長(zhǎng)為4,E是BC邊上的一個(gè)動(dòng)點(diǎn),AE⊥EF,EF交DC于點(diǎn)F,設(shè)BE=x,F(xiàn)C=y,則當(dāng)點(diǎn)E從點(diǎn)B運(yùn)動(dòng)到點(diǎn)C時(shí),y關(guān)于x的函數(shù)圖象是       (填序號(hào)).

查看答案和解析>>

同步練習(xí)冊(cè)答案