【題目】如圖,在△ABC中,CE⊥BA的延長(zhǎng)線于E,BF⊥CA的延長(zhǎng)線于F,M為BC的中點(diǎn),分別連接ME、MF、EF.
(1)若EF=3,BC=10,求△EFM的周長(zhǎng);
(2)若∠ABC=29°,∠ACB=46°,求∠EMF的度數(shù).
【答案】(1)13;(2)30°.
【解析】
試題分析:(1)根據(jù)直角三角形斜邊中線的性質(zhì)得出EM=FM=BC=5,進(jìn)而可求得△EFM的周長(zhǎng);
(2)根據(jù)直角三角形斜邊中線的性質(zhì)得出EM=BM,F(xiàn)M=MC,根據(jù)等腰三角形的性質(zhì)和三角形內(nèi)角和定理得出∠EMC=58°,∠FMC=88°,進(jìn)而可求得∠FME=88°﹣58°=30°.
試題解析:(1)∵CE⊥BA,M為BC的中點(diǎn),
∴EM=BC=4,
∵BF⊥CA,M為BC的中點(diǎn),
∴FM=BC=4,
∴△EFM的周長(zhǎng)為:EM+FM+EF=5+5+3=13;
(2)∵EM=BC,M為BC的中點(diǎn),
∴BM=EM,
∴∠EBM=∠BEM=29°,
∴∠EMC=58°,
∵FM=BC,M為BC的中點(diǎn),
∴FM=MC,
∴∠MFC=∠ACB=46°,
∴∠FMC=88°,
∴∠FME=88°﹣58°=30°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在大課間活動(dòng)中,體育老師對(duì)甲、乙兩名同學(xué)每人進(jìn)行10次立定跳遠(yuǎn)測(cè)試,他們的平均成績(jī)相同,方差分別是S甲=0.20,S乙=0.16,則甲、乙兩名同學(xué)成績(jī)更穩(wěn)定的是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列圖形中,既是軸對(duì)稱圖形,又是中心對(duì)稱圖形的是( ).
(A)平行四邊形 (B)矩形 (C)等腰梯形 (D)等邊三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在8×8網(wǎng)格紙中,每個(gè)小正方形的邊長(zhǎng)都為1.
(1)已知點(diǎn)A在第四象限,且到x軸距離為1,到y(tǒng)軸距離為5,求點(diǎn)A的坐標(biāo);
(2)在(1)的條件下,已知點(diǎn)B(a+1,﹣2a+10),且點(diǎn)B在第一、三象限的角平分線上,判斷△OAB的形狀.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某食品加工廠需要一批食品包裝盒,供應(yīng)這種包裝盒有兩種方案可供選擇:
方案一:從包裝盒加工廠直接購(gòu)買,購(gòu)買所需的費(fèi)y1與包裝盒數(shù)x滿足如圖1所示的函數(shù)關(guān)系.
方案二:租賃機(jī)器自己加工,所需費(fèi)用y2(包括租賃機(jī)器的費(fèi)用和生產(chǎn)包裝盒的費(fèi)用)與包裝盒數(shù)x滿足如圖2所示的函數(shù)關(guān)系.根據(jù)圖象回答下列問(wèn)題:
(1)方案一中每個(gè)包裝盒的價(jià)格是多少元?
(2)方案二中租賃機(jī)器的費(fèi)用是多少元?生產(chǎn)一個(gè)包裝盒的費(fèi)用是多少元?
(3)請(qǐng)分別求出y1、y2與x的函數(shù)關(guān)系式.
(4)如果你是決策者,你認(rèn)為應(yīng)該選擇哪種方案更省錢?并說(shuō)明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)下列表格的對(duì)應(yīng)值,判斷ax2+bx+c=0 (a≠0,a,b,c為常數(shù))的一個(gè)解x的取值范圍是_____
x | 3.23 | 3.24 | 3.25 | 3.26 |
ax2+bx+c | ﹣0.06 | ﹣0.02 | 0.03 | 0.09 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com