【題目】某水果批發(fā)商銷售每箱進(jìn)價(jià)為40元的蘋果,物價(jià)部門規(guī)定每箱售價(jià)不得高于55元,市場(chǎng)調(diào)查發(fā)現(xiàn),若每箱以50元的價(jià)格調(diào)查,平均每天銷售90箱,價(jià)格每提高1元,平均每天少銷售3箱.
(1)求平均每天銷售量y(箱)與銷售價(jià)x(元/箱)之間的函數(shù)關(guān)系式.
(2)求該批發(fā)商平均每天的銷售利潤(rùn)w(元)與銷售價(jià)x(元/箱)之間的函數(shù)關(guān)系式.
(3)當(dāng)每箱蘋果的銷售價(jià)為多少元時(shí),可以獲得最大利潤(rùn)?最大利潤(rùn)是多少?
【答案】(1)y=﹣3x+240;(2)w=﹣3x2+360x﹣9600;(3)當(dāng)每箱蘋果的銷售價(jià)為55元時(shí),可以獲得1125元的最大利潤(rùn).
【解析】試題分析:本題是通過(guò)構(gòu)建函數(shù)模型解答銷售利潤(rùn)的問(wèn)題.依據(jù)題意易得出平均每天銷售量(y)與銷售價(jià)x(元/箱)之間的函數(shù)關(guān)系式為y=90﹣3(x﹣50),然后根據(jù)銷售利潤(rùn)=銷售量×(售價(jià)﹣進(jìn)價(jià)),列出平均每天的銷售利潤(rùn)w(元)與銷售價(jià)x(元/箱)之間的函數(shù)關(guān)系式,再依據(jù)函數(shù)的增減性求得最大利潤(rùn).
解:(1)由題意得:
y=90﹣3(x﹣50)
化簡(jiǎn)得:y=﹣3x+240;(3分)
(2)由題意得:
w=(x﹣40)y
(x﹣40)(﹣3x+240)
=﹣3x2+360x﹣9600;(3分)
(3)w=﹣3x2+360x﹣9600
∵a=﹣3<0,
∴拋物線開口向下.
當(dāng)時(shí),w有最大值.
又x<60,w隨x的增大而增大.
∴當(dāng)x=55元時(shí),w的最大值為1125元.
∴當(dāng)每箱蘋果的銷售價(jià)為55元時(shí),可以獲得1125元的最大利潤(rùn).(4分)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若|x+2|+|y-1|=0,試問(wèn):P(x,y),Q(2x+2,y-2)兩點(diǎn)之間有怎樣的位置關(guān)系?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為保證中小學(xué)生每天鍛煉一小時(shí),漣水縣某中學(xué)開展了形式多樣的體育活動(dòng)項(xiàng)目,小明對(duì)某班同學(xué)參加鍛煉的情況進(jìn)行了統(tǒng)計(jì),并繪制了下面的統(tǒng)計(jì)圖(1)和圖(2).
(1)某班同學(xué)的總?cè)藬?shù)為 人;
(2)請(qǐng)根據(jù)所給信息在圖(1)中將表示“乒乓球”項(xiàng)目的圖形補(bǔ)充完整;
(3)扇形統(tǒng)計(jì)圖(2)中表示”籃球”項(xiàng)目扇形的圓心角度數(shù)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將二次函數(shù)y=x2﹣2x+3化為y=(x﹣h)2+k的形式,結(jié)果為( )
A.y=(x+1)2+4 B.y=(x﹣1)2+4
C.y=(x+1)2+2 D.y=(x﹣1)2+2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】五名學(xué)生投籃球,規(guī)定每人投20次,統(tǒng)計(jì)他們每人投中的次數(shù),得到五個(gè)數(shù)據(jù).若這五個(gè)數(shù)據(jù)的中位數(shù)是6,唯一眾數(shù)是7,則他們投中次數(shù)的總和可能是( )
A. 20 B. 28 C. 30 D. 31
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)P的坐標(biāo)為(5,﹣12),則點(diǎn)P到x軸的距離為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△BAC中,∠BAC=90°,將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到△AB′C′(點(diǎn)B的對(duì)應(yīng)點(diǎn)是點(diǎn)B′,點(diǎn)C的對(duì)應(yīng)點(diǎn)是點(diǎn)C′),連接CC′,若∠CC′B′=30°,求∠B的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,菱形ABCD的四個(gè)頂點(diǎn)均在坐標(biāo)軸上,A(0,2),∠ABC=60°.把一條長(zhǎng)為2013個(gè)單位長(zhǎng)度且沒(méi)有彈性的細(xì)線(線的粗細(xì)忽略不計(jì))的一端固定在點(diǎn)A處,并按A﹣B﹣C﹣D﹣A﹣…的規(guī)律緊繞在菱形ABCD的邊上,則細(xì)線另一端所在位置的點(diǎn)的坐標(biāo)是( )
A.(,) B.(,﹣) C.(﹣,) D.(﹣,)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com