【題目】如圖,在正方形ABCD中,M、N分別是射線CB和射線DC上的動(dòng)點(diǎn),且始終∠MAN45°

1)如圖1,當(dāng)點(diǎn)M、N分別在線段BC、DC上時(shí),請(qǐng)直接寫(xiě)出線段BM、MNDN之間的數(shù)量關(guān)系;

2)如圖2,當(dāng)點(diǎn)M、N分別在CB、DC的延長(zhǎng)線上時(shí),(1)中的結(jié)論是否仍然成立,若成立,給予證明,若不成立,寫(xiě)出正確的結(jié)論,并證明;

3)如圖3,當(dāng)點(diǎn)M、N分別在CB、DC的延長(zhǎng)線上時(shí),若CNCD6,設(shè)BDAM的延長(zhǎng)線交于點(diǎn)P,交ANQ,直接寫(xiě)出AQAP的長(zhǎng).

【答案】1BM+DNMN;(2)(1)中的結(jié)論不成立,DNBMMN.理由見(jiàn)解析;(3APAM+PM3

【解析】

1)在MB的延長(zhǎng)線上,截取BE=DN,連接AE,則可證明△ABE≌△ADN,得到AE=AN,進(jìn)一步證明△AEM≌△ANM,得出ME=MN,得出BM+DN=MN;
2)在DC上截取DF=BM,連接AF,可先證明△ABM≌△ADF,得出AM=AF,進(jìn)一步證明△MAN≌△FAN,可得到MN=NF,從而可得到DN-BM=MN
3)由已知得出DN=12,由勾股定理得出AN6 ,由平行線得出△ABQ∽△NDQ,得出,∴,求出AQ=2 ;由(2)得出DN-BM=MN.設(shè)BM=x,則MN=12-x,CM=6+x,在RtCMN中,由勾股定理得出方程,解方程得出BM=2,由勾股定理得出AM=,由平行線得出△PBM∽△PDA,得出,,求出PM= PMAM,

得出APAM+PM3.

1BM+DNMN,理由如下:

如圖1,在MB的延長(zhǎng)線上,截取BEDN,連接AE,

∵四邊形ABCD是正方形,

ABAD,∠BAD=∠ABC=∠D90°,

∴∠ABE90°=∠D,

在△ABE和△ADN中,,

∴△ABE≌△ADNSAS),

AEAN,∠EAB=∠NAD,

∴∠EAN=∠BAD90°

∵∠MAN45°,

∴∠EAM45°=∠NAM,

在△AEM和△ANM中,,

∴△AEM≌△ANMSAS),

MEMN,

又∵MEBE+BMBM+DN,

BM+DNMN

故答案為:BM+DNMN;

2)(1)中的結(jié)論不成立,DNBMMN.理由如下:

如圖2,在DC上截取DFBM,連接AF,

則∠ABM90°=∠D,

在△ABM和△ADF中,,

∴△ABM≌△ADFSAS),

AMAF,∠BAM=∠DAF,

∴∠BAM+BAF=∠BAF+DAF=∠BAD90°,

即∠MAF=∠BAD90°,

∵∠MAN45°

∴∠MAN=∠FAN45°,

在△MAN和△FAN中,,

∴△MAN≌△FANSAS),

MNNF,

MNDNDFDNBM,

DNBMMN

3)∵四邊形ABCD是正方形,

ABBCADCD6,ADBC,ABCD,∠ABC=∠ADC=∠BCD90°

∴∠ABM=∠MCN90°,

CNCD6

DN12,

AN6

ABCD,

∴△ABQ∽△NDQ,

,

,

AQAN2 ;

由(2)得:DNBMMN

設(shè)BMx,則MN12x,CM6+x,

RtCMN中,由勾股定理得:62+6+x2=(12x2,

解得:x2,

BM2,

AM2

BCAD,

∴△PBM∽△PDA

,

PMAM,

APAM+PM3

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)的圖像與反比例函數(shù)的圖像相交于A)、B)兩點(diǎn)。

1)求反比例函數(shù)和一次函數(shù)的解析式;

2)求直線ABx軸的交點(diǎn)C的坐標(biāo)及AOB的面積;

3)根據(jù)圖像直接寫(xiě)出使一次函數(shù)的值大于反比例函數(shù)的值的的取值范圍

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)有A、B兩個(gè)不透明袋子,分別裝有3個(gè)除顏色外完全相同的小球。其中,A袋裝有2個(gè)白球,1個(gè)紅球;B袋裝有2個(gè)紅球,1個(gè)白球。

1)將A袋搖勻,然后從A袋中隨機(jī)取出一個(gè)小球,求摸出小球是白色的概率;

2)小華和小林商定了一個(gè)游戲規(guī)則:從搖勻后的A,B兩袋中隨機(jī)摸出一個(gè)小球,摸出的這兩個(gè)小球,若顏色相同,則小林獲勝;若顏色不同,則小華獲勝。請(qǐng)用列表法或畫(huà)出樹(shù)狀圖的方法說(shuō)明這個(gè)游戲規(guī)則對(duì)雙方是否公平。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為弘揚(yáng)中華傳統(tǒng)文化,我市某中學(xué)決定根據(jù)學(xué)生的興趣愛(ài)好組建課外興趣小組,因此學(xué)校隨機(jī)抽取了部分同學(xué)的興趣愛(ài)好進(jìn)行調(diào)查,將收集的數(shù)據(jù)整理并繪制成下列兩幅統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中的信息,完成下列問(wèn)題:

(1)學(xué)校這次調(diào)查共抽取了   名學(xué)生;

(2)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)在扇形統(tǒng)計(jì)圖中,戲曲所在扇形的圓心角度數(shù)為   ;

(4)設(shè)該校共有學(xué)生2000名,請(qǐng)你估計(jì)該校有多少名學(xué)生喜歡書(shū)法?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了傳承中華優(yōu)秀傳統(tǒng)文化,某校組織八年級(jí)學(xué)生參加了“漢字聽(tīng)寫(xiě)”大賽,賽后發(fā)現(xiàn)所有參賽學(xué)生的成績(jī)均不低于50分.為了更好地了解大賽的成績(jī)分布情況,隨機(jī)抽取了其中若干名學(xué)生的成績(jī)(成績(jī)x取整數(shù),總分100分)作為樣本進(jìn)行整理,繪制如下不完整的條形統(tǒng)計(jì)圖.

漢字聽(tīng)寫(xiě)大賽成績(jī)分?jǐn)?shù)段統(tǒng)計(jì)表

分?jǐn)?shù)段

頻數(shù)

2

6

9

18

15

漢字聽(tīng)寫(xiě)大賽成績(jī)分?jǐn)?shù)段條形統(tǒng)計(jì)圖

(1)補(bǔ)全條形統(tǒng)計(jì)圖.

(2)這次抽取的學(xué)生成績(jī)的中位數(shù)在________的分?jǐn)?shù)段中;這次抽取的學(xué)生成績(jī)?cè)?/span>的分?jǐn)?shù)段的人數(shù)占抽取人數(shù)的百分比是_______.

(3)若該校八年級(jí)一共有學(xué)生350名,成績(jī)?cè)?0分以上(含90分)為“優(yōu)”,則八年級(jí)參加這次比賽的學(xué)生中成績(jī)“優(yōu)”等的約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,反比例函數(shù)y=(x>0)過(guò)點(diǎn)A(3,4),直線ACx軸交于點(diǎn)C(6,0),過(guò)點(diǎn)Cx軸的垂線BC交反比例函數(shù)圖象于點(diǎn)B.

(1)求k的值與B點(diǎn)的坐標(biāo);

(2)在平面內(nèi)有點(diǎn)D,使得以A,B,C,D四點(diǎn)為頂點(diǎn)的四邊形為平行四邊形,試寫(xiě)出符合條件的所有D點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,已知AD10cm,tanB2AEBC于點(diǎn)E,且AE4cm,點(diǎn)PBC邊上一動(dòng)點(diǎn).若△PAD為直角三角形,則BP的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】櫻桃是我市的特色時(shí)令水果.一上市,水果店的老板用2400元購(gòu)進(jìn)一批櫻桃,很快售完;老板又用3700元購(gòu)進(jìn)第二批櫻桃,進(jìn)價(jià)比第一批每千克少了11元,所購(gòu)件數(shù)是第一批2的倍.

1)第一批櫻桃進(jìn)價(jià)是每千克多少元?

2)老板以每千克50元的價(jià)格銷(xiāo)售第二批櫻桃,售出80%后,為了盡快售完,剩下降價(jià)促銷(xiāo)、要使得第二批櫻桃的銷(xiāo)售利潤(rùn)不低于1100元,剩余的櫻桃每千克最多降價(jià)多少元銷(xiāo)售?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,方格紙中的每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位長(zhǎng)度的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點(diǎn)均在格點(diǎn)上.

(1)將△ABC向下平移5個(gè)單位再向右平移1個(gè)單位后得到對(duì)應(yīng)的△A1B1C1,畫(huà)出△A1B1C1

(2)畫(huà)出△A1B1C1關(guān)于y軸對(duì)稱的△A2B2C2;

(3)P(a,b)是△ABC的邊AC上一點(diǎn),請(qǐng)直接寫(xiě)出經(jīng)過(guò)兩次變換后在△A2B2C2中對(duì)應(yīng)的點(diǎn)P2的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案