【題目】已知:如圖,在平面直角坐標(biāo)系中,四邊形ABCO是菱形,且AOC=60°,點(diǎn)B的坐標(biāo)是(0,8),點(diǎn)P從點(diǎn)C開(kāi)始以每秒個(gè)單位長(zhǎng)度的速度沿線段CB向點(diǎn)B移動(dòng),同時(shí),點(diǎn)Q從點(diǎn)O開(kāi)始以每秒3個(gè)單位長(zhǎng)度的速度沿射線OA方向移動(dòng),點(diǎn)P運(yùn)動(dòng)到點(diǎn)B時(shí),兩點(diǎn)停止運(yùn)動(dòng).直線PQOB于點(diǎn)D,運(yùn)動(dòng)時(shí)間為t秒.

(1)直接寫(xiě)出點(diǎn)A的坐標(biāo);

(2)求t為何值時(shí),直線PQ與菱形ABCO的邊互相垂直;

(3)如果將題中的條件變?yōu)辄c(diǎn)P的速度為每秒1個(gè)單位,點(diǎn)Q的速度為每秒a(1a3)單位,設(shè)運(yùn)動(dòng)時(shí)間為t(0<t8),其它條件不變.當(dāng)a為何值時(shí),以OQ,D為頂點(diǎn)的三角形與OAB相似?請(qǐng)給出你的結(jié)論,并加以證明.

【答案】(1)A(4,4).(2)t=2,t=8;(3)3.

【解析】

試題分析:(1)連接AC交OB于點(diǎn)M,根據(jù)菱形的性質(zhì),在RTAMO中,求出AM、OM即可.

(2)分兩種情形如圖1中,當(dāng)PQOA時(shí),過(guò)C作CHOA于H,如圖2中,當(dāng)PQAB時(shí),過(guò)P作PNAB交射線OA于N,分別利用直角三角形30度性質(zhì)列出方程即可解決.

(3)當(dāng)a=1,a=3時(shí),以O(shè),Q,D為頂點(diǎn)的三角形與OAB相似,當(dāng)a=1,ODQ∽△OBA,a=3時(shí),ODQ∽△OAB分別根據(jù)相似三角形性質(zhì)列出方程即可解決.

試題解析:(1)連接AC交OB于點(diǎn)M,

∵∠AOC=60°,四邊形ABCO是菱形,

AC垂直平分OB,OM=OB=4AOM=30°,

AM=4,

點(diǎn)D坐標(biāo)為A(4,4).

(2)如圖1中,當(dāng)PQOA時(shí),過(guò)C作CHOA于H,

PQCH,PCQH,

四邊形PCHQ是平行四邊形,

∵∠CHQ=90°,

四邊形PCHQ是矩形,

PC=QH=t,OQ=3t,OCH=30°,OH=2t=OC=4

t=2.

如圖2中,當(dāng)PQAB時(shí),過(guò)P作PNAB交射線OA于N,

由菱形ABCO,PN=AB=8,

OQ=3t,CP=t,PQN=30°,NQ=2t=16,

t=8,

即當(dāng)t=2,t=8時(shí),直線PQ與菱形ABCO的邊互相垂直.

(3)當(dāng)a=1,a=3時(shí),以O(shè),Q,D為頂點(diǎn)的三角形與OAB相似,

當(dāng)a=1,ODQ∽△OBA,

證明:由ODQ∽△OBA,可得ODQ=OBA,此時(shí)PQAB,

四邊形PCOQ為平行四邊形,

CP=OQ,即at=t,(0<t8)

a=1時(shí),ODQ∽△OBA,

a=3時(shí),ODQ∽△OAB

當(dāng)P與B重合時(shí),D點(diǎn)也與B重合,此時(shí)t=8,

ODQ∽△OAB,得

OD=OB,

OB2=OAOQ,

82=8×8a,

a=3,

a=3,ODQ∽△OAB.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】當(dāng)a是偶數(shù)時(shí),(xyayxb與(yxa+b的關(guān)系是( 。
A.相等
B.互為倒數(shù)
C.互為相反數(shù)
D.無(wú)法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一個(gè)圓柱形容器高為1.2m,底面周長(zhǎng)為1m,在容器內(nèi)壁離容器底部0.3m的點(diǎn)B處有一蚊子,此時(shí)一只壁虎正好在容器壁,離容器上沿0.3m與蚊子相對(duì)的點(diǎn)A處,則壁虎捕捉蚊子的最短距離為 ______ m(容器厚度忽略不計(jì)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知平行四邊形ABCD的兩邊AB、AD的長(zhǎng)是方程x2﹣4x+m﹣3=0的兩個(gè)實(shí)數(shù)根,當(dāng)m何值時(shí),平行四邊形ABCD是菱形?并求出此時(shí)菱形的邊長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】∠1=25°∠1的余角的大小是( 。

A. 55° B. 65° C. 75° D. 155°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面給出四邊形ABCD中,∠A , ∠B , ∠C , ∠D的度數(shù)之比,其中能判定四邊形ABCD為平行四邊形的是(
A.1∶2∶3∶4
B.2∶3∶2∶3
C.2∶2∶3∶3
D.1∶2∶2∶3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】班上數(shù)學(xué)興趣小組的同學(xué)在元旦時(shí),互贈(zèng)新年賀卡,每?jī)蓚(gè)同學(xué)都相互贈(zèng)送一張,小明統(tǒng)計(jì)出全組共互送了90張賀年卡,那么數(shù)學(xué)興趣小組的人數(shù)是多少?設(shè)數(shù)學(xué)興趣小組人數(shù)為x人,則可列方程為(  )

A. x(x-1)=90 B. x(x-1)=2×90 C. x(x-1)=90÷2 D. x(x+1)=90

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】測(cè)得某乒乓球廠生產(chǎn)的五個(gè)乒乓球的質(zhì)量誤差(g)如下表.檢驗(yàn)時(shí),通常把比標(biāo)準(zhǔn)質(zhì)量大的克數(shù)記為正,比標(biāo)準(zhǔn)質(zhì)量小的克數(shù)記為負(fù).請(qǐng)你選出最接近標(biāo)準(zhǔn)質(zhì)量的球,是 號(hào).

號(hào)碼

1

2

3

4

5

誤差(g)

-0.02

0.1

-0.23

-0.3

0.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)最長(zhǎng)的河流長(zhǎng)江全長(zhǎng)約為6300千米,數(shù)6300用科學(xué)記數(shù)法表示為(  )

A. 0.63×104 B. 6.3×103 C. 63×102 D. 6.3×106

查看答案和解析>>

同步練習(xí)冊(cè)答案