【題目】如圖,直線y=x+m與雙曲線y=相交于A,B兩點(diǎn),BCx軸,ACy軸,則△ABC面積的最小值為_____

【答案】6

【解析】

根據(jù)雙曲線y=A,B兩點(diǎn),可設(shè)A(a,),B(b,),則C(a,).將y=x+m代入y=,整理得x2+mx-3=0,由于直線y=x+m與雙曲線y=相交于A,B兩點(diǎn),所以a、b是方程x2+mx-3=0的兩個根,根據(jù)根與系數(shù)的關(guān)系得出a+b=-m,ab=-3,那么(a-b)2=(a+b)2-4ab=m2+12.再根據(jù)三角形的面積公式得出SABC=ACBC=m2+6,利用二次函數(shù)的性質(zhì)即可求出當(dāng)m=0時(shí),△ABC的面積有最小值6.

設(shè)A(a,),B(b,),則C(a,).

y=x+m代入y=,得x+m=,

整理,得x2+mx-3=0,

a+b=-m,ab=-3,

(a-b)2=(a+b)2-4ab=m2+12.

SABC=ACBC

=-)(a-b)

=(a-b)

=(a-b)2

=(m2+12)

=m2+6,

∴當(dāng)m=0時(shí),△ABC的面積有最小6.

故答案為6.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC為等邊三角形,AECD,ADBE相交于點(diǎn)PBQADQ,PQ3,PE1

1)求證:BEAD;

2)求∠BPD的度數(shù);

3)求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=2x+3與x軸相交于點(diǎn)A,與y軸相交于點(diǎn)B.

(1)求A,B兩點(diǎn)的坐標(biāo);

(2)過B點(diǎn)作直線BP與x軸相交于P,且使OP=2OA, 求ΔABP的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在ABC中,BF、CF是角平分線,DEBC,分別交AB、AC于點(diǎn)D、EDE經(jīng)過點(diǎn)F.結(jié)論:①△BDFCEF都是等腰三角形;②DE=BD+CE; ③△ADE的周長=AB+AC;BF=CF.其中正確的是______(填序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知矩形ABCD中,EAD邊上的一個動點(diǎn),點(diǎn)F,G,H分別是BC,BE,CE的中點(diǎn).

(1)求證:BGF≌△FHC;

(2)設(shè)AD=a,當(dāng)四邊形EGFH是正方形時(shí),求矩形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】空地上有一段長為a米的舊墻MN,某人利用舊墻和木欄圍成一個矩形菜園ABCD,已知木欄總長為100米.

(1)已知a=20,矩形菜園的一邊靠墻,另三邊一共用了100米木欄,且圍成的矩形菜園面積為450平方米.如圖1,求所利用舊墻AD的長;

(2)已知0<α<50,且空地足夠大,如圖2.請你合理利用舊墻及所給木欄設(shè)計(jì)一個方案,使得所圍成的矩形菜園ABCD的面積最大,并求面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是(

A. 一定是一次函數(shù)

B. 有的實(shí)數(shù)在數(shù)軸上找不到對應(yīng)的點(diǎn)

C. 長為的三條線段能組成直角三角形

D. 無論為何值,點(diǎn)總是在第二象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:線段AB,BC,

求作:矩形ABCD

老師說甲、乙同學(xué)的作圖都正確. 請你選擇其中一位同學(xué)的作業(yè)說明其作圖依據(jù).

我選擇____同學(xué),他的作圖依據(jù)是:___________________________________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的直徑,延長至點(diǎn),過點(diǎn)的切線,切點(diǎn)為,過點(diǎn)的延長線作垂線交該延長線于點(diǎn),于點(diǎn),已知,

的長;

連結(jié),延長,連結(jié)

的長;

求證:的切線.

查看答案和解析>>

同步練習(xí)冊答案