【題目】如圖,在中,,, ,,點上,于點于點,當時,________

【答案】3

【解析】

如圖作PQABQ,PRBCR.由△QPE∽△RPF,推出==2可得PQ=2PR=2BQ,PQBC,可得AQQPAP=ABBCAC=345,PQ=4xAQ=3x,AP=5x,BQ=2x可得2x+3x=3,求出x即可解決問題

如圖,PQABQ,PRBCR

∵∠PQB=QBR=BRP=90°,∴四邊形PQBR是矩形∴∠QPR=90°=MPN,∴∠QPE=RPF∴△QPE∽△RPF,==2,PQ=2PR=2BQ

PQBC,AQQPAP=ABBCAC=345,PQ=4xAQ=3x,AP=5x,BQ=2x2x+3x=3,x=AP=5x=3

故答案為:3

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD內接于⊙O,BAD=90°,點EBC的延長線上,且∠DEC=BAC.

(1)求證:DE是⊙O的切線;

(2)若ACDE,當AB=8,CE=2時,求AC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某縣冬季流感嚴重,學生感染較多,造成不少學校放假,為了預防流感,縣教體局要求各校進行防控.某學校計劃利用周末將教室及公共環(huán)境進行噴藥消毒,現(xiàn)有甲、乙兩位老師主動承接該工作,若甲、乙兩老師合作6小時可以完成全部工作;若甲老師單獨做4小時后,剩下的乙老師單獨做還需9小時完成.求甲、乙兩老師單獨完成該工作各需多少小時?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx-3的對稱軸為直線x=1,交x軸于A,B兩點,交y軸于C點,其中B點的坐標為(3,0).

(1)直接寫出A點的坐標;

(2)求二次函數(shù)y=ax2+bx-3的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系xOy中,拋物線C:y=ax2+bx+cx軸相交于A,B兩點,頂點為D(0,4),AB=4,設點F(m,0)x軸的正半軸上一點,將拋物線C繞點F旋轉180°,得到新的拋物線C/

(1)求拋物線C的函數(shù)表達式;

(2)若拋物線C/與拋物線Cy軸的右側有兩個不同的公共點,求m的取值范圍.

(3)如圖2,P是第一象限內拋物線C上一點,它到兩坐標軸的距離相等,點P在拋物線C/上的對應點P/,設MC上的動點,NC/上的動點,試探究四邊形PMP/N能否成為正方形?若能,請直接寫出m的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,過點B作射線BB1∥AC.動點D從點A出發(fā)沿射線AC方向以每秒5個單位的速度運動,同時動點E從點C沿射線AC方向以每秒3個單位的速度運動.過點D作DH⊥AB于H,過點E作EF⊥AC交射線BB1于F,G是EF中點,連接DG.設點D運動的時間為t秒.

(1)當t為何值時,AD=AB,并求出此時DE的長度;

(2)當△DEG與△ACB相似時,求t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于A(﹣1,0)、B(3,0)兩點,與y軸交于點C,頂點為D,下列結論正確的是( 。

A. abc<0

B. 3a+c=0

C. 4a﹣2b+c<0

D. 方程ax2+bx+c=﹣2(a≠0)有兩個不相等的實數(shù)根

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在⊙O中,AB是⊙O的直徑,點D是⊙O上一點,點C是弧AD的中點,弦CEAB于點F,過點D的切線交EC的延長線于點G,連接AD,分別交CF、BC于點P、Q,連接AC.給出下列結論:①∠BAD=ABC;GP=GD;③點PACQ的外心;④APAD=CQCB.其中正確的是(  )

A. ①②③ B. ②③④ C. ①③④ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一只箱子里共有3個球,其中2個白球,1個紅球,它們除顏色外均相同。

(1)從箱子中任意摸出一個球是白球的概率是多少?

(2)從箱子中任意摸出一個球,不將它放回箱子,攪勻后再摸出一個球,求兩次摸出球的都是白球的概率,并畫出樹狀圖。

查看答案和解析>>

同步練習冊答案