【題目】在一堂數(shù)學(xué)實(shí)踐課上,趙老師給出了下列問題:
(提出問題)
(1)如圖1,在△ABC中,E是BC的中點(diǎn),P是AE的中點(diǎn),就稱CP是△ABC的“雙中線”,∠ACB=90°,AC=3,AB=5.則CP= .
(探究規(guī)律)
(2)在圖2中,E是正方形ABCD一邊上的中點(diǎn),P是BE上的中點(diǎn),則稱AP是正方形ABCD的“雙中線”,若AB=4.則AP的長(zhǎng)為 (按圖示輔助線求解);
(3)在圖3中,AP是矩形ABCD的“雙中線”,若AB=4,BC=6,請(qǐng)仿照(2)中的方法求出AP的長(zhǎng),并說明理由;
(拓展應(yīng)用)
(4)在圖4中,AP是平行四邊形ABCD的“雙中線”,若AB=4,BC=10,∠BAD=120°.求出△ABP的周長(zhǎng),并說明理由?
【答案】(1);(2);(3)3;(4)△ABP的周長(zhǎng)為4+.
【解析】
(1)利用勾股定理求出AE,再利用直角三角形斜邊中線的性質(zhì)即可解決問題.
(2)利用勾股定理求出DF,再利用直角三角形斜邊中線的性質(zhì)即可解決問題.
(3)如圖3中,連接DP,延長(zhǎng)DP交AB的延長(zhǎng)線于H.利用全等三角形的性質(zhì)以及勾股定理求出DH即可解決問題.
(4)如圖4中,連接DP,延長(zhǎng)DP交AB的延長(zhǎng)線于H,作DK⊥BA交BA的延長(zhǎng)線于K,AN⊥DH于N,EM⊥BC交BC的延長(zhǎng)線于M.分別求出BP,AP即可解決問題.
解:(1)如圖1中,
在Rt△ABC中,∵∠ACB=90°,AB=5,AC=3,
∴BC=
∵E是BC的中點(diǎn),
∴EC=EB=2,
∴AE=
∵P是AE的中點(diǎn),
∴PC=AE= .
故答案為.
(2)如圖2中,連接DP,延長(zhǎng)DP交AB的延長(zhǎng)線于F.
∵四邊形ABCD是正方形,
∴AB=CD=4,AB∥CD,∠FAD=90°,
∴∠F=∠PDE,
∵PB=PE,∠FPB=∠EPD,
∴△FPB≌△DPE(AAS),
∴DP=PF,BF=DE=CD=2,AF=AB+B4=2=6,
在Rt△ADF中,DF=
∵DP=PF,
∴AP=DF= ,
故答案為.
(3)如圖3中,連接DP,延長(zhǎng)DP交AB的延長(zhǎng)線于H.
同法可證:∠DAB=90°,△HPB≌△DPE,
∴DE=BH=CD=2,DP=PH,AHAB+BH=6,
在Rt△ADH中,DH=
∵DP=PH,
∴PA=DH= .
(4)如圖4中,連接DP,延長(zhǎng)DP交AB的延長(zhǎng)線于H,作DK⊥BA交BA的延長(zhǎng)線于K,AN⊥DH于N,EM⊥BC交BC的延長(zhǎng)線于M.
∵四邊形ABCD是平行四邊形,
∴∠BAD=∠BCD=120°,AB=CD=4,AD=BC=10,
在Rt△ADK中,∵∠KAD=60°,∠K=90°,AD=10,
∴AK=AD=5,KD=AK=,
在Rt△ECM中,∵∠M=90°,∠ECM=60°,EC=CD=2,
∴CM=EC=1,EM= ,
在Rt△BEM中,BE=
∵P是BE的中點(diǎn),
∴PB=EB=,
∵△PBH≌△PED,
∴DP=PH,DE=BH=2,HK=BH+AB+AK=2+4+5=11,
∴DH=
∴PH=PD=7,
∵∠AHN=∠DHE,∠ANH=∠K=90°,
∴△HAN∽△HDK,
∴
∴
∴AN=,HN=,
∴PN=PH﹣HN=7﹣=,
∵AN⊥DH,
∴PA=
∴△ABP的周長(zhǎng)=AB+PA+PB=
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠BAC=90°,AB=2,AC=4,D是BC邊上一動(dòng)點(diǎn),G是BC邊上的一動(dòng)點(diǎn),GE∥AD分別交AC、BA或其延長(zhǎng)線于F、E兩點(diǎn)
(1)如圖1,當(dāng)BC=5BD時(shí),求證:EG⊥BC;
(2)如圖2,當(dāng)BD=CD時(shí),FG+EG是否發(fā)生變化?證明你的結(jié)論;
(3)當(dāng)BD=CD,FG=2EF時(shí),DG的值= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠ABC=90°,∠A=30°,AC的垂直平分線交AC邊于點(diǎn)D,交AB邊于點(diǎn)O,以點(diǎn)O為圓心,OB的長(zhǎng)為半徑作圓,與AB邊交于點(diǎn)E.
(1)求證:AC是⊙O的切線;
(2)若點(diǎn)P為⊙O上的動(dòng)點(diǎn)(含點(diǎn)E,B),連接BD、BP、DP.
①當(dāng)點(diǎn)P只在BE左側(cè)半圓上時(shí),如果BC∥DP,求∠BDP的度數(shù);
②若Q是BP的中點(diǎn),當(dāng)BE=4時(shí),直接寫出CQ長(zhǎng)度的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD是角平分錢,點(diǎn)E在AC上,且∠EAD=∠ADE.
(1)求證:△DCE∽△BCA;
(2)若AB=3,AC=4.求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的頂點(diǎn)P是BC的中點(diǎn),兩邊PE,PF分別交AB,AC于點(diǎn)E,F,現(xiàn)給出以下四個(gè)結(jié)論:(1)AE=CF;(2)△EPF是等腰直角三角形;(3)S四邊形AEPF=S△ABC;(4)當(dāng)∠EPF在△ABC內(nèi)繞頂點(diǎn)P旋轉(zhuǎn)時(shí)始終有EF=AP.(點(diǎn)E不與A、B重合),上述結(jié)論中是正確的結(jié)論的概率是( 。
A.1個(gè)B.3個(gè)C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】嘉淇同學(xué)利用業(yè)余時(shí)間進(jìn)行射擊訓(xùn)練,一共射擊7次,經(jīng)過統(tǒng)計(jì),制成如圖12所示的折線統(tǒng)計(jì)圖.
(1)這組成績(jī)的眾數(shù)是 ;
(2)求這組成績(jī)的方差;
(3)若嘉淇再射擊一次(成績(jī)?yōu)檎麛?shù)環(huán)),得到這8次射擊成績(jī)的中位數(shù)恰好就是原來7次成績(jī)的中位數(shù),求第8次的射擊成績(jī)的最大環(huán)數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在半徑為6的⊙O中,正六邊形ABCDEF與正方形AGDH都內(nèi)接于⊙O,則圖中陰影部分的面積為( )
A. 27﹣9B. 18C. 54﹣18D. 54
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明和小亮計(jì)劃寒假結(jié)伴參加志愿者活動(dòng).小明想?yún)⒓泳蠢戏⻊?wù)活動(dòng),小亮想?yún)⒓游拿鞫Y儀宣傳活動(dòng).他們想通過做游戲來決定參加哪個(gè)活動(dòng),于是小明設(shè)計(jì)了一個(gè)游戲,游戲規(guī)則是:在一個(gè)不透明的袋子中裝有編號(hào)為,,的三個(gè)球(除編號(hào)外都完全相同),從中隨機(jī)摸出一個(gè)球,記下數(shù)字后放回,再?gòu)闹忻鲆粋(gè)球,記下數(shù)字,若兩次數(shù)字之和為偶數(shù),則按照小明的想法參加敬老服務(wù)活動(dòng);若兩次數(shù)字之和為奇數(shù),則按照小亮的想法參加文明禮儀宣傳活動(dòng).你認(rèn)為這個(gè)游戲公平嗎?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O中的弦BC等于⊙O的半徑,延長(zhǎng)BC到D,使BC=CD,點(diǎn)A為優(yōu)弧BC上的一個(gè)動(dòng)點(diǎn),連接AD,AB,AC,過點(diǎn)D作DE⊥AB,交直線AB于點(diǎn)E,當(dāng)點(diǎn)A在優(yōu)弧BC上從點(diǎn)C運(yùn)動(dòng)到點(diǎn)B時(shí),則DE+AC的值的變化情況是( )
A.不變B.先變大再變小C.先變小再變大D.無法確定
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com