【題目】如圖,AB是⊙O的直徑, BM切⊙O于點B,點P是⊙O上的一個動點(不經(jīng)過A,B兩點),過O作OQ∥AP交于點Q,過點P作于C,交的延長線于點E,連結(jié).
(1)求證:PQ與⊙O相切;
(2)若直徑AB的長為12,PC=2EC,求tan∠E的值.
【答案】(1)詳見解析;(2).
【解析】試題分析:(1)連接OP,根據(jù)平行線的性質(zhì)得到∠EOC=∠OAP,∠POQ=∠APO,根據(jù)等腰三角形的性質(zhì)得到∠APO=∠OAP,推出△POQ≌△BOQ,根據(jù)全等三角形的性質(zhì)得到∠OPQ=∠OBQ=90°,根據(jù)切線的判定定理即可得到結(jié)論;
(2)由OQ∥AP,可得△COE∽△CAP,從而列比例式求出PC的長; 由OQ∥AP,∠E=∠APC,所以tan∠E=,從而求得結(jié)果.
解:(1)連接OP,
∵OQ∥AP,∴∠A=∠BOQ,∠APO=∠POQ,
又∵OA=OP,∴∠A=∠APO.
∴∠BOQ=∠POQ,
在△OQB與△OQP中,
∠BOQ=∠POQ,OP=OB,OQ=OQ,
∴△OQB≌△OQP,
∴∠OBQ=∠OPQ,PQ=BQ.
∵BM切⊙O于點B,∴∠OBQ=∠OPQ=90°.
∴PQ與⊙O相切;
(2) ∵OQ∥AP,∴△COE∽△CAP,∴,
由AB的長為12,
∴OA=6.
∵PC=2EC, ∴OC=2,AC=4,
∴.
由OQ∥AP,∠E=∠APC,
∴tan∠E=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某自行車廠計劃一周生產(chǎn)1400輛自行車,平均每天生產(chǎn)200輛,由于各種原因,實際每天的生產(chǎn)量與計劃量相比有出入。
下表是某周的生產(chǎn)情況(超產(chǎn)為正,減產(chǎn)為負(fù)):
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
增減 |
(1)根據(jù)記錄可知前三天共生產(chǎn)了_________輛;
(2)產(chǎn)量最多的一天比產(chǎn)量最少的一天多生產(chǎn)__________輛;
(3)該廠實行計件工資制,每輛車60元,超額完成任務(wù)每輛獎15元,少生產(chǎn)一輛扣15元,那么該廠工人這一周的工資總額是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)y=的圖象與一次函數(shù)y=kx+b的圖象交于點A,B,點A、B的橫坐標(biāo)分別為1,﹣2,一次函數(shù)圖象與y軸的交于點C,與x軸交于點D.
(1)求一次函數(shù)的解析式;
(2)對于反比例函數(shù)y=,當(dāng)y<﹣1時,寫出x的取值范圍;
(3)在第三象限的反比例圖象上是否存在一個點P,使得S△ODP=2S△OCA?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,四邊形ABCD是長方形, ∠A=∠B=∠C=∠D=90°,AB∥CD,AB=CD=4,AD=BC=6,點A的坐標(biāo)為(3,2).動點P的運動速度為每秒a個單位長度,動點Q的運動速度為每秒b個單位長度,且.設(shè)運動時間為t,動點P、Q相遇則停止運動.
(1) 求a,b的值;
(2) 動點P,Q同時從點A出發(fā),點P沿長方形ABCD的邊界逆時針方向運動,點Q沿長方形ABCD的邊界順時針方向運動,當(dāng)t為何值時P、Q兩點相遇?求出相遇時P、Q所在位置的坐標(biāo);
(3) 動點P從點A出發(fā),同時動點Q從點D出發(fā):
①若點P、Q均沿長方形ABCD的邊界順時針方向運動,t為何值時,P、Q兩點相遇?求出相遇時P、Q所在位置的坐標(biāo);
②若點P、Q均沿長方形ABCD的邊界逆時針方向運動,t為何值時,P、Q兩點相遇?求出相遇時P、Q所在位置的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,點D是直線BC上一點(不與B、C重合),以AD為一邊在AD的右側(cè)作△ADE,使AD=AE,∠DAE =∠BAC,連接CE.
(1)如圖1,當(dāng)點D在線段BC上,如果∠BAC=90°,則∠BCE=________度;
(2)設(shè),.
①如圖2,當(dāng)點在線段BC上移動,則,之間有怎樣的數(shù)量關(guān)系?請說明理由;
②當(dāng)點在直線BC上移動,則,之間有怎樣的數(shù)量關(guān)系?請直接寫出你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】D是△ABC內(nèi)一點,那么,在下列結(jié)論中錯誤的是( ).
A. BD+CD>BCB. ∠BDC>∠AC. BD>CDD. AB+AC>BD+CD
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,D,E分別為AB,AC上一點,將△BCD,△ADE分別沿CD,DE折疊,點A、B恰好重合于點A'處.若∠A'CA=18°,則∠A=____°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點D是C的中點,AC的垂直平分線分別交AC,AD,AB于點E,O,F.
(1)求證:點O在AB的垂直平分線上;
(2)若∠CAD=20°,求∠BOF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:直線 AB,CD 相交于點 O,且OE CD ,如圖.
(1)過點 O 作直線 MN AB;
(2)若點 F 是(1)中所畫直線 MN 上任意一點(O 點除外),且AOC 35°,求EOF的度數(shù);
(3)若BOD:DOA 1:5,求AOE 的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com