有一種產(chǎn)品,生產(chǎn)x噸需費(fèi)用(1000+5x+
1
10
x2)元,而賣出x噸的價(jià)格為p元/噸,其中p=a+
x
b
(a,b為常數(shù)),如果生產(chǎn)出來的產(chǎn)品全部賣掉,并且當(dāng)產(chǎn)量是150噸時(shí),所獲利潤最大,這時(shí)的價(jià)格為每噸40元,試求a,b的值.
分析:首先設(shè)出售x噸時(shí),利潤是y元,根據(jù)題意表示出利潤,然后根據(jù)二次函數(shù)求最值方法進(jìn)行計(jì)算,求出a,b.
解答:解:設(shè)出售x噸時(shí),利潤是y元,
y=(a+
x
b
)x-(1000+5x+
x2
10
)

=
10-b
10b
x2+(a-5)x-1000

依題意可知,
當(dāng)x=150時(shí),y有最大值,
a+
150
b
=40

當(dāng)b<0或b>10時(shí),
10-b
10b
<0,
5b(a-5)
b-10
=150

a+
150
b
=40   ①
5b(a-5)
b-10
=150 ②

解①②得:
a=45
b=-30
點(diǎn)評(píng):此題考查了函數(shù)模型的應(yīng)用,通過對(duì)實(shí)際問題分析,轉(zhuǎn)化為函數(shù)表達(dá)式,通過二次函數(shù)求最值計(jì)算,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

有一種產(chǎn)品,生產(chǎn)x噸需費(fèi)用(1000+5x+
1
10
x2)元,而賣出x噸的價(jià)格為p元/噸,其中p=a+
x
b
(a,b為常數(shù)),如果生產(chǎn)出來的產(chǎn)品全部賣掉,并且當(dāng)產(chǎn)量是150噸時(shí),所獲利潤最大,這時(shí)的價(jià)格為每噸40元,則a,b的值分別為
a=45
a=45
、
b=-30
b=-30

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

有一種產(chǎn)品,生產(chǎn)x噸需費(fèi)用(1000+5x+數(shù)學(xué)公式x2)元,而賣出x噸的價(jià)格為p元/噸,其中p=a+數(shù)學(xué)公式(a,b為常數(shù)),如果生產(chǎn)出來的產(chǎn)品全部賣掉,并且當(dāng)產(chǎn)量是150噸時(shí),所獲利潤最大,這時(shí)的價(jià)格為每噸40元,試求a,b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年浙江省杭州市三墩中學(xué)中考數(shù)學(xué)模擬試卷(3月份)(解析版) 題型:填空題

有一種產(chǎn)品,生產(chǎn)x噸需費(fèi)用(1000+5x+x2)元,而賣出x噸的價(jià)格為p元/噸,其中p=a+(a,b為常數(shù)),如果生產(chǎn)出來的產(chǎn)品全部賣掉,并且當(dāng)產(chǎn)量是150噸時(shí),所獲利潤最大,這時(shí)的價(jià)格為每噸40元,則a,b的值分別為    、   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年浙江省寧波市慈溪中學(xué)提前招生數(shù)學(xué)模擬試卷(解析版) 題型:解答題

有一種產(chǎn)品,生產(chǎn)x噸需費(fèi)用(1000+5x+x2)元,而賣出x噸的價(jià)格為p元/噸,其中p=a+(a,b為常數(shù)),如果生產(chǎn)出來的產(chǎn)品全部賣掉,并且當(dāng)產(chǎn)量是150噸時(shí),所獲利潤最大,這時(shí)的價(jià)格為每噸40元,試求a,b的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案