分析 (1)首先利用ASA得出△DAF≌△ECF,進(jìn)而利用全等三角形的性質(zhì)得出CE=AD,即可得出四邊形ACDE是平行四邊形;
(2)由AE⊥EC,四邊形ADCE是平行四邊形,可推出四邊形ADCE是矩形,由F為AC的中點(diǎn),求出AC,根據(jù)勾股定理即可求得AE,由矩形面積公式即可求得結(jié)論.
解答 解:(1)證明:∵CE∥AB,
∴∠BAC=∠ECA,
在△DAF和△ECF中,
$\left\{\begin{array}{l}{∠DAF=∠ECF}\\{FA=FC}\\{∠AFD=∠CFE}\end{array}\right.$,
∴△DAF≌△ECF (ASA),
∴CE=AD,
∴四邊形ADCE是平行四邊形;
(2)∵AE⊥EC,四邊形ADCE是平行四邊形,
∴四邊形ADCE是矩形,
在Rt△AEC中,F(xiàn)為AC的中點(diǎn),
∴AC=2EF=2,
∴AE2=AC2-EC2=22-12=3,
∴AE=$\sqrt{3}$,
∴四邊形ADCE的面積=AE•EC=$\sqrt{3}$.
點(diǎn)評(píng) 此題主要考查了平行四邊形的判定,全等三角形的判定與性質(zhì),矩形的判定,勾股定理,得出∴△DAF≌△ECF 是解題關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com